Question
When four basketball players are about to have a free-throw competition, they often draw names out of a hat to randomly select th alphabetical order? Assume each player has a different name. P(shoot free throws in alphabetical order) (Type an integer or a simplified fraction.)
Ask by Osborne Luna. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The probability that the four basketball players shoot free throws in alphabetical order is \(\frac{1}{24}\).
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
The Deep Dive
To find the probability that four basketball players shoot free throws in alphabetical order, first note that there are 4 players, which can be arranged in \(4!\) (4 factorial) ways. This equals \(24\). However, there is only one specific arrangement where all players shoot in alphabetical order. Therefore, the probability \(P\) is calculated as follows: \[ P(shoot free throws in alphabetical order) = \frac{1}{4!} = \frac{1}{24}. \] So, the answer is \(\frac{1}{24}\).