Answer
The geometric series converges for the following values of \( x \):
1. \( |x| < \frac{1}{2} \)
2. \( |x| < 1 \)
3. \( -2 < x < 0 \)
4. \( 0 < x < 2 \)
5. \( 2 < x < 3 \)
6. \( 3 < x < 4 \)
7. \( \frac{1}{3} < x < 1 \)
8. \( 0 < x < 1 \)
Solution
To determine the values of \( x \) for which each of the given geometric series converges, we need to recall the condition for convergence of a geometric series. A geometric series of the form \( a + ar + ar^2 + ar^3 + \ldots \) converges if the common ratio \( r \) satisfies \( |r| < 1 \).
Let's analyze each series one by one:
### (1) \( x + 2x^2 + 4x^3 + \ldots \)
This series can be rewritten as:
\[
x + 2x^2 + 4x^3 + \ldots = x(1 + 2x + 4x^2 + \ldots)
\]
The common ratio \( r = 2x \). For convergence:
\[
|2x| < 1 \implies |x| < \frac{1}{2}
\]
### (2) \( 1 - x + x^2 - \ldots \)
This series can be rewritten as:
\[
1 - x + x^2 - \ldots = \frac{1}{1+x} \quad \text{(geometric series with } r = -x\text{)}
\]
For convergence:
\[
|-x| < 1 \implies |x| < 1
\]
### (3) \( (x+1) + (x+1)^2 + (x+1)^3 + \ldots \)
This series can be rewritten as:
\[
(x+1) + (x+1)^2 + (x+1)^3 + \ldots
\]
The common ratio \( r = (x+1) \). For convergence:
\[
|x+1| < 1 \implies -1 < x + 1 < 1 \implies -2 < x < 0
\]
### (4) \( 2(1-x) + 2(1-x)^2 + 2(1-x)^3 + \ldots \)
This series can be rewritten as:
\[
2(1-x) + 2(1-x)^2 + 2(1-x)^3 + \ldots
\]
The common ratio \( r = (1-x) \). For convergence:
\[
|1-x| < 1 \implies 0 < x < 2
\]
### (5) \( (2x-5) + (2x-5)^2 + (2x-5)^3 + \ldots \)
This series can be rewritten as:
\[
(2x-5) + (2x-5)^2 + (2x-5)^3 + \ldots
\]
The common ratio \( r = (2x-5) \). For convergence:
\[
|2x-5| < 1 \implies 4 < 2x < 6 \implies 2 < x < 3
\]
### (6) \( x(7-2x)^4 - x(7-2x)^5 + x(7-2x)^6 - \ldots \)
This series can be rewritten as:
\[
x(7-2x)^4(1 - (7-2x) + (7-2x)^2 - \ldots)
\]
The common ratio \( r = -(7-2x) \). For convergence:
\[
|-(7-2x)| < 1 \implies |7-2x| < 1 \implies 6 < 2x < 8 \implies 3 < x < 4
\]
### (7) \( (3x-2)^3 - (3x-2)^4 + (3x-2)^5 - \ldots \)
This series can be rewritten as:
\[
(3x-2)^3(1 - (3x-2) + (3x-2)^2 - \ldots)
\]
The common ratio \( r = -(3x-2) \). For convergence:
\[
|-(3x-2)| < 1 \implies |3x-2| < 1 \implies 1 < 3x < 3 \implies \frac{1}{3} < x < 1
\]
### (8) \( (2-4x) + 2(2x-1)^2 - 2(2x-1)^3 + \ldots \)
This series can be rewritten as:
\[
(2-4x) + 2(2x-1)^2 - 2(2x-1)^3 + \ldots
\]
The common ratio \( r = -(2x-1) \). For convergence:
\[
|-(2x-1)| < 1 \implies |2x-1| < 1 \implies 0 < 2x < 2 \implies 0 < x < 1
\]
### Summary of Convergence Conditions
1. \( |x| < \frac{1}{2} \)
2. \( |x| < 1 \)
3. \( -2 < x < 0 \)
4. \( 0 < x < 2 \)
5. \( 2 < x < 3 \)
6. \( 3 < x < 4 \)
7. \( \frac{1}{3} < x < 1 \)
8. \( 0 < x < 1 \)
These intervals provide the values of \( x \) for which each series converges.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution