Show that \( 2^{2011} \cdot 5^{2007}=1,6 \times 10^{2008} \) Hence determine the sum of the digits of \( 2^{2011} \cdot 5^{2007} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To show that \( 2^{2011} \cdot 5^{2007} = 1.6 \times 10^{2008} \), we can manipulate the expression itself: 1. We rewrite the expression: \[ 2^{2011} \cdot 5^{2007} = 2^{2011} \cdot 5^{2007} = 2^{4} \cdot (2^{2007} \cdot 5^{2007}) = 16 \cdot (2 \cdot 5)^{2007} = 16 \cdot 10^{2007} \] 2. Now, we have: \[ 16 \cdot 10^{2007} \] 3. To convert \(16\) into a form that can be expressed in scientific notation, we write: \[ 16 = 1.6 \times 10^{1} \] 4. Therefore we substitute back: \[ 16 \cdot 10^{2007} = (1.6 \times 10^{1}) \cdot 10^{2007} = 1.6 \times 10^{2008} \] Thus, we have shown that: \[ 2^{2011} \cdot 5^{2007} = 1.6 \times 10^{2008} \] Next, to determine the sum of the digits of \(2^{2011} \cdot 5^{2007}\): 1. Since \(2^{2011} \cdot 5^{2007} = 1.6 \times 10^{2008}\), the number in decimal notation will be: \[ 1.6 \text{ followed by } 2008 \text{ zeros, which gives us } 16000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 \] 2. The digits consist of: \[ 1, 6 \text{ followed by } 2008 \text{ zeros} \] 3. The sum of the digits is: \[ 1 + 6 + 0 + 0 + 0 + \ldots + 0 = 7 \] Thus, the sum of the digits of \(2^{2011} \cdot 5^{2007}\) is: \[ \boxed{7} \]