Select the expressions that are equivalent to \( 6(4 f-2)-5 \). \[ \begin{array}{c}(-4 f+8 f-2) 6-5 \\ 6(-2+4 f)-5 \\ -17 f+24 \\ 6(f+3 f-2)-5\end{array} \]
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the problem, we first need to simplify the expression \( 6(4f - 2) - 5 \). 1. Expand \( 6(4f - 2) \): \[ 6 \cdot 4f - 6 \cdot 2 = 24f - 12 \] 2. Now subtract 5: \[ 24f - 12 - 5 = 24f - 17 \] Now we need to check which of the given expressions is equivalent to \( 24f - 17 \). 1. For the first expression \( (-4f + 8f - 2)6 - 5 \): - Simplifying, we get \( (8f - 4f - 2)6 - 5 = (4f - 2)6 - 5 = 24f - 12 - 5 = 24f - 17\). 2. For the second expression \( 6(-2 + 4f) - 5 \): - Simplifying, we get \( 6 \cdot (-2) + 6 \cdot 4f - 5 = -12 + 24f - 5 = 24f - 17\). 3. For the third expression \( -17f + 24 \): - This is not equivalent to \( 24f - 17\). 4. For the fourth expression \( 6(f + 3f - 2) - 5 \): - Simplifying, \( 6(4f - 2) - 5 = 24f - 12 - 5 = 24f - 17 \). The expressions equivalent to \( 6(4f - 2) - 5 \) are the first, second, and fourth expressions. **Final Result:** - **First Expression:** Yes, \( 6(4f - 2) - 5 \equiv (-4f + 8f - 2)6 - 5 \). - **Second Expression:** Yes, \( 6(4f - 2) - 5 \equiv 6(-2 + 4f) - 5 \). - **Third Expression:** No, because it simplifies to \(-17f + 24\). - **Fourth Expression:** Yes, \( 6(4f - 2) - 5 \equiv 6(f + 3f - 2) - 5 \). Thus, the expressions that are equivalent to \( 6(4 f-2)-5 \) are: - \( (-4 f + 8 f - 2) 6 - 5 \) - \( 6(-2 + 4 f) - 5 \) - \( 6(f + 3 f - 2) - 5 \)