Question
upstudy study bank question image url

Find the exact value of the expression. \[ \cos \left[\tan ^{-1} \frac{15}{8}-\cos ^{-1} \frac{7}{25}\right] \] \( \cos \left[\tan ^{-1} \frac{15}{8}-\cos ^{-1} \frac{7}{25}\right]=\square \) (Type an integer or a simplified fraction.)

Ask by Jimenez Stewart. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The exact value of the expression is \( \frac{416}{425} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To find the exact value of the expression \[ \cos \left[\tan ^{-1} \frac{15}{8}-\cos ^{-1} \frac{7}{25}\right], \] we can use the cosine subtraction formula: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B. \] Let: - \( A = \tan^{-1} \frac{15}{8} \) - \( B = \cos^{-1} \frac{7}{25} \) ### Step 1: Calculate \( \cos A \) and \( \sin A \) For \( A = \tan^{-1} \frac{15}{8} \), we can interpret this as a right triangle where: - Opposite side = 15 - Adjacent side = 8 The hypotenuse can be calculated using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17. \] So, we can find \( \cos A \) and \( \sin A \): \[ \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{8}{17}, \] \[ \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{15}{17}. \] ### Step 2: Calculate \( \cos B \) and \( \sin B \) For \( B = \cos^{-1} \frac{7}{25} \), we know: \[ \cos B = \frac{7}{25}. \] Using the Pythagorean identity: \[ \sin^2 B + \cos^2 B = 1 \] \[ \sin^2 B + \left(\frac{7}{25}\right)^2 = 1 \] \[ \sin^2 B + \frac{49}{625} = 1 \] \[ \sin^2 B = 1 - \frac{49}{625} = \frac{625 - 49}{625} = \frac{576}{625}. \] Thus, \[ \sin B = \sqrt{\frac{576}{625}} = \frac{24}{25}. \] ### Step 3: Combine using the cosine subtraction formula Now we can substitute \( \sin A \), \( \sin B \), \( \cos A \), and \( \cos B \) into the cosine subtraction formula: \[ \cos \left[\tan^{-1} \frac{15}{8} - \cos^{-1} \frac{7}{25}\right] = \cos A \cos B + \sin A \sin B \] \[ = \left(\frac{8}{17} \cdot \frac{7}{25}\right) + \left(\frac{15}{17} \cdot \frac{24}{25}\right). \] Calculating each term: \[ = \frac{56}{425} + \frac{360}{425} = \frac{56 + 360}{425} = \frac{416}{425}. \] Thus, the exact value of the expression is \[ \boxed{\frac{416}{425}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy