Question
upstudy study bank question image url

12. \( \frac{e}{f^{2}-2 f+1} \), for \( e=-6 \) and \( f=5 \) 13. \( \frac{17-u^{2}}{v^{2}-4 v} \), for \( u=-3 \) and \( v=2 \) 14. \( \frac{-50}{2 x^{2}-3 x+5} \), for \( x=-1 \) 15. \( \frac{y^{3}-4 y+6}{3} \), for \( y=-2 \)

Ask by Pritchard Horton. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

12. \(-\frac{3}{8}\) 13. \(-2\) 14. \(-5\) 15. \(2\)

Solution

Sure, let's evaluate each of the given expressions by substituting the provided values step-by-step. --- ### **Problem 12** \[ \frac{e}{f^{2} - 2f + 1} \] **Given:** \( e = -6 \), \( f = 5 \) **Step 1: Calculate the denominator** \[ f^{2} - 2f + 1 = (5)^{2} - 2(5) + 1 = 25 - 10 + 1 = 16 \] **Step 2: Substitute the values into the expression** \[ \frac{e}{f^{2} - 2f + 1} = \frac{-6}{16} = -\frac{3}{8} \] **Answer:** \(-\frac{3}{8}\) --- ### **Problem 13** \[ \frac{17 - u^{2}}{v^{2} - 4v} \] **Given:** \( u = -3 \), \( v = 2 \) **Step 1: Calculate the numerator** \[ 17 - u^{2} = 17 - (-3)^{2} = 17 - 9 = 8 \] **Step 2: Calculate the denominator** \[ v^{2} - 4v = (2)^{2} - 4(2) = 4 - 8 = -4 \] **Step 3: Substitute the values into the expression** \[ \frac{17 - u^{2}}{v^{2} - 4v} = \frac{8}{-4} = -2 \] **Answer:** \(-2\) --- ### **Problem 14** \[ \frac{-50}{2x^{2} - 3x + 5} \] **Given:** \( x = -1 \) **Step 1: Calculate the denominator** \[ 2x^{2} - 3x + 5 = 2(-1)^{2} - 3(-1) + 5 = 2(1) + 3 + 5 = 2 + 3 + 5 = 10 \] **Step 2: Substitute the values into the expression** \[ \frac{-50}{2x^{2} - 3x + 5} = \frac{-50}{10} = -5 \] **Answer:** \(-5\) --- ### **Problem 15** \[ \frac{y^{3} - 4y + 6}{3} \] **Given:** \( y = -2 \) **Step 1: Calculate the numerator** \[ y^{3} - 4y + 6 = (-2)^{3} - 4(-2) + 6 = -8 + 8 + 6 = 6 \] **Step 2: Substitute the values into the expression** \[ \frac{y^{3} - 4y + 6}{3} = \frac{6}{3} = 2 \] **Answer:** \(2\) --- ### **Summary of Answers** 12. \(-\frac{3}{8}\) 13. \(-2\) 14. \(-5\) 15. \(2\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To calculate the first expression, we substitute \( e = -6 \) and \( f = 5 \) into the equation. The denominator simplifies as follows: \( f^2 - 2f + 1 = 5^2 - 2(5) + 1 = 25 - 10 + 1 = 16 \). Therefore, \( \frac{-6}{16} = -\frac{3}{8} \). For the second expression, we replace \( u = -3 \) and \( v = 2 \). The numerator becomes \( 17 - (-3)^2 = 17 - 9 = 8 \) and the denominator simplifies as \( v^2 - 4v = 2^2 - 4(2) = 4 - 8 = -4 \). Thus, \( \frac{8}{-4} = -2 \). Next, for the third expression, substituting \( x = -1 \) gives us \( 2(-1)^2 - 3(-1) + 5 = 2(1) + 3 + 5 = 10 \). Therefore, \( \frac{-50}{10} = -5 \). Finally, in the last expression, substituting \( y = -2 \) results in \( (-2)^3 - 4(-2) + 6 = -8 + 8 + 6 = 6 \). Hence, \( \frac{6}{3} = 2 \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy