Question
upstudy study bank question image url

1. (3 pts) For each of the matrices below, find its inverse. \[ A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \quad C=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{array}\right] \] Comment: This problem should be done by hand (but you can use Matlab to check your 2. (2 pts) Express the matrix \( B \) above as a product of elementary matrices. Hint: You can/should refer to your work on Problem 1 to help with this.

Ask by Carter Mejia. in the United States
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Matrix inverses and elementary matrix expressions for the given matrices are as follows: 1. **Matrix A:** \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] 2. **Matrix B:** \[ B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] Matrix \( B \) can be expressed as: \[ B = E_2 E_1 I \] where \( E_1 \) and \( E_2 \) are elementary matrices corresponding to the row operations: - \( R1 + R2 \) - \( R1 + R3 \) 3. **Matrix C:** \[ C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \]

Solution

Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rr}{1}&{2}\\{3}&{4}\end{array}\right]\) - step1: Evaluate the determinant: \(-2\) - step2: Using the formula: \(\frac{1}{1\times 4-2\times 3}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step3: Evaluate: \(-\frac{1}{2}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step4: Multiply the terms: \(\left[\begin{array}{rr}{-\frac{1}{2}\times 4}&{-\frac{1}{2}\left(-2\right)}\\{-\frac{1}{2}\left(-3\right)}&{-\frac{1}{2}\times 1}\end{array}\right]\) - step5: Evaluate: \(\left[\begin{array}{rr}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrr}{1}&{1}&{1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{-1}&{0}&{-1}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{0}&{2}&{-1}&{-1}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{1}&{-1}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step7: Write the right half matrix: \(\left[\begin{array}{rrr}{1}&{-1}&{0}\\{1}&{0}&{-1}\\{-1}&{1}&{1}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrrr}{1}&{2}&{1}&{0}\\{2}&{1}&{0}&{1}\\{2}&{0}&{1}&{3}\\{0}&{1}&{3}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{1}&{0}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step7: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step8: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{-1}&{-\frac{8}{5}}&{\frac{11}{5}}&{-\frac{7}{5}}&{1}\end{array}\right]\) - step9: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step10: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step11: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{0}&{\frac{6}{5}}&{-\frac{16}{15}}&{\frac{7}{15}}&{-\frac{1}{3}}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step12: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step13: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{0}&{0}&{\frac{11}{5}}&{-\frac{7}{5}}&{\frac{4}{5}}&{-1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step14: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{0}&{0}&{0}&{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step15: Write the right half matrix: \(\left[\begin{array}{rrrr}{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{2}&{-2}&{1}&{-1}\\{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) ### Problem 1: Finding Inverses of Matrices 1. **Matrix A:** \[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \] The inverse of matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] 2. **Matrix B:** \[ B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \] The inverse of matrix \( B \) is: \[ B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] 3. **Matrix C:** \[ C = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \] The inverse of matrix \( C \) is: \[ C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \] ### Problem 2: Expressing Matrix B as a Product of Elementary Matrices To express matrix \( B \) as a product of elementary matrices, we can perform row operations to transform the identity matrix into \( B \). The elementary matrices correspond to these row operations. 1. Start with the identity matrix \( I \): \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] 2. Perform the following row operations to obtain \( B \): - **R1 + R2 → R2**: This operation adds the first row to the second row. - **R1 + R3 → R3**: This operation adds the first row to the third row. The corresponding elementary matrices for these operations are: - For \( R1 + R2 \): \[ E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] - For \( R1 + R3 \): \[ E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \] Thus, we can express \( B \) as: \[ B = E_2 E_1 I \] In conclusion, the matrix \( B \) can be expressed as a product of elementary matrices corresponding to the row operations performed.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the inverse of matrix \( A \), we apply the formula \( A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \). Here, for \( A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), we have \( a=1, b=2, c=3, d=4 \). The determinant is \( ad - bc = 1 \cdot 4 - 2 \cdot 3 = -2 \). Thus, \( A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \). For the matrix \( B \), we start by row reducing it to the identity matrix and apply the same row operations to the identity matrix to find the product of the elementary matrices. The row operations on \( B \) can be done by transforming it into an upper triangular form followed by row reductions, which ultimately leads to the identity matrix. The series of operations will give elementary matrices that are multiplied together to yield \( B^{-1} \). To summarize, finding inverses by hand is a great brain exercise, while using Matlab to check the answers is just savvy! It’s history—matrices have been around for centuries, helping mathematicians tackle complex problems. For practical problems, inverses like those of \( A \) and \( B \) are essential in computer graphics, systems of equations, and optimization problems, making them not just academic but highly applicable in real-world tech!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy