Pregunta
upstudy study bank question image url

1. (3 pts) For each of the matrices below, find its inverse. \[ A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \quad C=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{array}\right] \] Comment: This problem should be done by hand (but you can use Matlab to check your 2. (2 pts) Express the matrix \( B \) above as a product of elementary matrices. Hint: You can/should refer to your work on Problem 1 to help with this.

Ask by Carter Mejia. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Matrix inverses and elementary matrix expressions for the given matrices are as follows: 1. **Matrix A:** \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] 2. **Matrix B:** \[ B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] Matrix \( B \) can be expressed as: \[ B = E_2 E_1 I \] where \( E_1 \) and \( E_2 \) are elementary matrices corresponding to the row operations: - \( R1 + R2 \) - \( R1 + R3 \) 3. **Matrix C:** \[ C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \]

Solución

Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rr}{1}&{2}\\{3}&{4}\end{array}\right]\) - step1: Evaluate the determinant: \(-2\) - step2: Using the formula: \(\frac{1}{1\times 4-2\times 3}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step3: Evaluate: \(-\frac{1}{2}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step4: Multiply the terms: \(\left[\begin{array}{rr}{-\frac{1}{2}\times 4}&{-\frac{1}{2}\left(-2\right)}\\{-\frac{1}{2}\left(-3\right)}&{-\frac{1}{2}\times 1}\end{array}\right]\) - step5: Evaluate: \(\left[\begin{array}{rr}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrr}{1}&{1}&{1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{-1}&{0}&{-1}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{0}&{2}&{-1}&{-1}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{1}&{-1}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step7: Write the right half matrix: \(\left[\begin{array}{rrr}{1}&{-1}&{0}\\{1}&{0}&{-1}\\{-1}&{1}&{1}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrrr}{1}&{2}&{1}&{0}\\{2}&{1}&{0}&{1}\\{2}&{0}&{1}&{3}\\{0}&{1}&{3}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{1}&{0}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step7: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step8: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{-1}&{-\frac{8}{5}}&{\frac{11}{5}}&{-\frac{7}{5}}&{1}\end{array}\right]\) - step9: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step10: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step11: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{0}&{\frac{6}{5}}&{-\frac{16}{15}}&{\frac{7}{15}}&{-\frac{1}{3}}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step12: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step13: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{0}&{0}&{\frac{11}{5}}&{-\frac{7}{5}}&{\frac{4}{5}}&{-1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step14: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{0}&{0}&{0}&{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step15: Write the right half matrix: \(\left[\begin{array}{rrrr}{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{2}&{-2}&{1}&{-1}\\{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) ### Problem 1: Finding Inverses of Matrices 1. **Matrix A:** \[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \] The inverse of matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] 2. **Matrix B:** \[ B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \] The inverse of matrix \( B \) is: \[ B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] 3. **Matrix C:** \[ C = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \] The inverse of matrix \( C \) is: \[ C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \] ### Problem 2: Expressing Matrix B as a Product of Elementary Matrices To express matrix \( B \) as a product of elementary matrices, we can perform row operations to transform the identity matrix into \( B \). The elementary matrices correspond to these row operations. 1. Start with the identity matrix \( I \): \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] 2. Perform the following row operations to obtain \( B \): - **R1 + R2 → R2**: This operation adds the first row to the second row. - **R1 + R3 → R3**: This operation adds the first row to the third row. The corresponding elementary matrices for these operations are: - For \( R1 + R2 \): \[ E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] - For \( R1 + R3 \): \[ E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \] Thus, we can express \( B \) as: \[ B = E_2 E_1 I \] In conclusion, the matrix \( B \) can be expressed as a product of elementary matrices corresponding to the row operations performed.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the inverse of matrix \( A \), we apply the formula \( A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \). Here, for \( A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), we have \( a=1, b=2, c=3, d=4 \). The determinant is \( ad - bc = 1 \cdot 4 - 2 \cdot 3 = -2 \). Thus, \( A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \). For the matrix \( B \), we start by row reducing it to the identity matrix and apply the same row operations to the identity matrix to find the product of the elementary matrices. The row operations on \( B \) can be done by transforming it into an upper triangular form followed by row reductions, which ultimately leads to the identity matrix. The series of operations will give elementary matrices that are multiplied together to yield \( B^{-1} \). To summarize, finding inverses by hand is a great brain exercise, while using Matlab to check the answers is just savvy! It’s history—matrices have been around for centuries, helping mathematicians tackle complex problems. For practical problems, inverses like those of \( A \) and \( B \) are essential in computer graphics, systems of equations, and optimization problems, making them not just academic but highly applicable in real-world tech!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad