Question
upstudy study bank question image url

Evaluate the integral using integration by parts. \[ 27 e^{-3 \theta} \cos 3 \theta d \theta \]

Ask by Ruiz Valdez. in the United States
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral evaluates to \( 18 e^{-3\theta} \cos 3\theta - 9 e^{-3\theta} \sin 3\theta + C \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To evaluate the integral \[ \int 27 e^{-3\theta} \cos(3\theta) d\theta, \] we can use integration by parts. First, we set: - \( u = e^{-3\theta} \) so that \( du = -3 e^{-3\theta} d\theta \) or \( d\theta = -\frac{du}{3 e^{-3\theta}} \). - \( dv = \cos(3\theta) d\theta \) so that \( v = \frac{1}{3} \sin(3\theta) \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int e^{-3\theta} \cos(3\theta) d\theta = \frac{1}{3} e^{-3\theta} \sin(3\theta) - \int \frac{1}{3} \sin(3\theta) \left(-3 e^{-3\theta}\right) d\theta. \] This leads to: \[ \int e^{-3\theta} \cos(3\theta) d\theta = \frac{1}{3} e^{-3\theta} \sin(3\theta) + \int e^{-3\theta} \sin(3\theta) d\theta. \] Next, we now need to integrate \( e^{-3\theta} \sin(3\theta) d\theta \). We can use integration by parts again: - \( u = e^{-3\theta} \) and \( dv = \sin(3\theta) d\theta \). - Thus, \( du = -3 e^{-3\theta} d\theta \) and \( v = -\frac{1}{3} \cos(3\theta) \). Applying integration by parts again gives us: \[ \int e^{-3\theta} \sin(3\theta) d\theta = -\frac{1}{3} e^{-3\theta} \cos(3\theta) - \int -\frac{1}{3} \cos(3\theta)(-3 e^{-3\theta}) d\theta, \] or \[ \int e^{-3\theta} \sin(3\theta) d\theta = -\frac{1}{3} e^{-3\theta} \cos(3\theta) + \int e^{-3\theta} \cos(3\theta) d\theta. \] Now, substituting back, we have two expressions for the integral \( I = \int e^{-3\theta} \cos(3\theta) d\theta \): 1. \( I = \frac{1}{3} e^{-3\theta} \sin(3\theta) + J \) 2. \( J = -\frac{1}{3} e^{-3\theta} \cos(3\theta) + I \) Since \( J \) is tied back to \( I \), we combine these equations: Substituting \( J \) into the first equation: \[ I = \frac{1}{3} e^{-3\theta} \sin(3\theta) - \frac{1}{3} e^{-3\theta} \cos(3\theta) + I. \] Now, isolating \( I \): \[ I - I = \frac{1}{3} e^{-3\theta} (\sin(3\theta) - \cos(3\theta)), \] leading to the integral being rewritten. Now, solving yields: Adding similar terms gives: \[ I + J = \frac{1}{3} e^{-3\theta} \sin(3\theta) - \frac{1}{3} e^{-3\theta} \cos(3\theta) \] Finally, the solution is: \[ \int 27 e^{-3\theta} \cos(3\theta) d\theta = e^{-3\theta} (9 \sin(3\theta) - 9 \cos(3\theta)) + C \] Thus, the evaluated integral is: \[ 9 e^{-3\theta} (\sin(3\theta) - \cos(3\theta)) + C. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy