Answer
\[
\log \left( \frac{162}{343} \right) + 2 \log \left( \frac{7}{9} \right) - \log \left( \frac{1}{7} \right) = \log 2
\]
\[
3^{3} + \log^{3} = 27 + (\log a)^{3}
\]
\[
\sqrt{x} \cdot \log \left( \frac{\sqrt{x}}{\sqrt{x}} \right) = 0
\]
\[
\log (\sqrt{x}) = \frac{1}{2} \log x
\]
Solution
Sure, let's solve each of the given problems step by step.
---
### Problem (4)
**Show that:**
\[
\log \left( \frac{162}{343} \right) + 2 \log \left( \frac{7}{9} \right) - \log \left( \frac{1}{7} \right) = \log 2
\]
**Solution:**
We'll use logarithm properties to simplify the left-hand side (LHS) of the equation:
1. **Apply the Quotient Rule:**
\[
\log \left( \frac{a}{b} \right) = \log a - \log b
\]
2. **Apply the Power Rule:**
\[
k \cdot \log a = \log a^k
\]
3. **Apply the Product Rule as needed:**
Let's break down the LHS step by step.
**Step 1: Expand Each Logarithm Using the Quotient and Power Rules**
\[
\begin{align*}
\text{LHS} &= \log \left( \frac{162}{343} \right) + 2 \log \left( \frac{7}{9} \right) - \log \left( \frac{1}{7} \right) \\
&= (\log 162 - \log 343) + 2 (\log 7 - \log 9) - (\log 1 - \log 7) \\
\end{align*}
\]
**Step 2: Simplify Using Known Logarithm Values**
\[
\log 1 = 0 \quad \text{(since } 10^0 = 1\text{)}
\]
\[
\begin{align*}
\text{LHS} &= \log 162 - \log 343 + 2\log 7 - 2\log 9 - 0 + \log 7 \\
&= \log 162 - \log 343 + 3\log 7 - 2\log 9 \\
\end{align*}
\]
**Step 3: Express Numbers as Powers of Primes**
\[
162 = 2 \times 81 = 2 \times 3^4 \\
343 = 7^3 \\
9 = 3^2 \\
\]
\[
\begin{align*}
\text{LHS} &= \log (2 \times 3^4) - \log (7^3) + 3\log 7 - 2\log (3^2) \\
&= \log 2 + 4\log 3 - 3\log 7 + 3\log 7 - 4\log 3 \\
\end{align*}
\]
**Step 4: Combine Like Terms**
\[
\begin{align*}
\text{LHS} &= (\log 2) + (4\log 3 - 4\log 3) + (-3\log 7 + 3\log 7) \\
&= \log 2 + 0 + 0 \\
&= \log 2 \\
\end{align*}
\]
**Conclusion:**
\[
\log \left( \frac{162}{343} \right) + 2 \log \left( \frac{7}{9} \right) - \log \left( \frac{1}{7} \right) = \log 2
\]
---
### Additional Problems
#### Problem (2)
**Find the value of:**
\[
\sqrt{x} \cdot \log \left( \frac{\sqrt{x}}{\sqrt{x}} \right)
\]
**Solution:**
Simplify the expression inside the logarithm first:
\[
\frac{\sqrt{x}}{\sqrt{x}} = 1
\]
\[
\log(1) = 0 \quad \text{(since } 10^0 = 1\text{)}
\]
\[
\sqrt{x} \cdot 0 = 0
\]
**Conclusion:**
\[
\sqrt{x} \cdot \log \left( \frac{\sqrt{x}}{\sqrt{x}} \right) = 0
\]
---
#### Problem (3)
**Find the value of:**
\[
\log (\sqrt{x})
\]
**Solution:**
Use the Power Rule of logarithms:
\[
\log (\sqrt{x}) = \log (x^{1/2}) = \frac{1}{2} \log x
\]
**Conclusion:**
\[
\log (\sqrt{x}) = \frac{1}{2} \log x
\]
---
#### Problem (1)
**Find the value of:**
\[
3^{3} + \log^{3}
\]
**Solution:**
It appears there's a typographical error in the expression \(\log^{3}\). Typically, the logarithm function requires an argument, such as \(\log a\). Assuming the intended expression is:
\[
3^{3} + (\log a)^{3}
\]
Then:
\[
3^{3} = 27
\]
\[
\therefore 3^{3} + (\log a)^{3} = 27 + (\log a)^{3}
\]
If a specific value for \(a\) is provided, you can substitute it in to find the numerical value. Otherwise, the expression remains in terms of \(\log a\).
**Conclusion:**
\[
3^{3} + \log^{3} = 27 + (\log a)^{3} \quad \text{(assuming a missing argument in the logarithm)}
\]
*If the expression was meant to be different, please provide the complete and accurate form so it can be solved accordingly.*
---
Feel free to ask if you need further clarification or assistance with any other problems!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution