\( \frac { 2 ^ { 3 b + 2 } \cdot 7 ^ { 3 b - 2 } } { 14 ^ { 3 b } - 14 ^ { 3 b - 1 } \cdot 2 } \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let's simplify the expression step by step. The expression given is: \[ \frac { 2 ^ { 3 b + 2 } \cdot 7 ^ { 3 b - 2 } } { 14 ^ { 3 b } - 14 ^ { 3 b - 1 } \cdot 2 } \] First, we can rewrite the denominator: \[ 14^{3b} = (2 \cdot 7)^{3b} = 2^{3b} \cdot 7^{3b} \] \[ 14^{3b-1} \cdot 2 = (2 \cdot 7)^{3b-1} \cdot 2 = 2^{3b-1} \cdot 7^{3b-1} \cdot 2 = 2^{3b} \cdot 7^{3b-1} \] Now substituting back gives us: \[ 14^{3b} - 14^{3b-1} \cdot 2 = 2^{3b} \cdot 7^{3b} - 2^{3b} \cdot 7^{3b-1} \] Factoring out \(2^{3b}\): \[ = 2^{3b} (7^{3b} - 7^{3b-1}) = 2^{3b} (7^{3b-1}(7 - 1)) = 2^{3b} \cdot 7^{3b-1} \cdot 6 \] Substituting this back into the original expression gives us: \[ \frac{2^{3b+2} \cdot 7^{3b-2}}{2^{3b} \cdot 7^{3b-1} \cdot 6} \] Now we can simplify this: The \(2^{3b}\) in the denominator cancels with the \(2^{3b+2}\) in the numerator: \[ = \frac{2^2 \cdot 7^{3b-2}}{7^{3b-1} \cdot 6} \] Now, the \(7^{3b-1}\) in the denominator simplifies with \(7^{3b-2}\): \[ = \frac{4 \cdot 7^{(3b-2)-(3b-1)}}{6} = \frac{4 \cdot 7^{-1}}{6} = \frac{4}{6 \cdot 7} = \frac{2}{3 \cdot 7} \] Finally, we obtain the simplified result: \[ \frac{2}{21} \]