Question
upstudy study bank question image url

Establish the identity. \[ (\csc \theta+\cot \theta)(\csc \theta-\cot \theta)=1 \] Multiply and write the left side expression as the difference of two squares.

Ask by Robbins Ramos. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \csc^2 \theta - \cot^2 \theta = 1 \]

Solution

Calculate or simplify the expression \( (\csc \theta+\cot \theta)(\csc \theta-\cot \theta) \). Simplify the expression by following steps: - step0: Solution: \(\left(\csc\left(\theta \right)+\cot\left(\theta \right)\right)\left(\csc\left(\theta \right)-\cot\left(\theta \right)\right)\) - step1: Transform the expression: \(\frac{1+\cot\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \left(\csc\left(\theta \right)-\cot\left(\theta \right)\right)\) - step2: Transform the expression: \(\frac{1+\cot\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \frac{1-\cot\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\) - step3: Multiply the terms: \(\frac{\left(1+\cot\left(\theta \right)\sin\left(\theta \right)\right)\left(1-\cot\left(\theta \right)\sin\left(\theta \right)\right)}{\sin\left(\theta \right)\sin\left(\theta \right)}\) - step4: Multiply the terms: \(\frac{\left(1+\cot\left(\theta \right)\sin\left(\theta \right)\right)\left(1-\cot\left(\theta \right)\sin\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\) - step5: Transform the expression: \(\frac{\left(1+\cos\left(\theta \right)\right)\left(1-\cos\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\) - step6: Transform the expression: \(\frac{-\left(-\sin^{2}\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\) - step7: Calculate: \(\frac{\sin^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\) - step8: Reduce the fraction: \(1\) The identity \((\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = 1\) is established. Now, let's simplify the left side expression by multiplying it: \((\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = \csc^2 \theta - \cot^2 \theta\) Therefore, the identity can be written as: \(\csc^2 \theta - \cot^2 \theta = 1\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To establish the identity, we start by noting that the left-hand side can be expressed as the difference of two squares: \[ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = \csc^2 \theta - \cot^2 \theta. \] Using the Pythagorean identity, we know that: \[ \csc^2 \theta = 1 + \cot^2 \theta. \] Now, substituting this into our expression gives: \[ \csc^2 \theta - \cot^2 \theta = (1 + \cot^2 \theta) - \cot^2 \theta = 1. \] Thus, we have shown that: \[ (\csc \theta + \cot \theta)(\csc \theta - \cot \theta) = 1. \] This confirms the identity is true!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy