Question
upstudy study bank question image url

1 Differentiate the following functions with respect to \( x \). (a) \( x(3 x+2)^{2} \) (b) \( (x+1)(x-3)^{2} \) (c) \( (2-3 x)(4 x+1)^{4} \) (d) \( (2+x)^{2}\left(x^{2}+2\right) \)

Ask by Cummings Stuart. in Singapore
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The derivatives of the functions are: 1. **(a)** \( f'(x) = (3x + 2)(9x + 2) \) 2. **(b)** \( f'(x) = (x - 3)(3x - 1) \) 3. **(c)** \( f'(x) = (4x + 1)^3 (29 - 60x) \) 4. **(d)** \( f'(x) = 4(x + 2)(x^2 + x + 1) \)

Solution

Certainly! Let's differentiate each of the given functions with respect to \( x \). We'll use differentiation rules such as the **Product Rule** and the **Chain Rule** where applicable. ### Problem 1(a): **Differentiate** \( f(x) = x(3x + 2)^2 \) **with respect to** \( x \). **Solution:** We'll use the **Product Rule**, which states that if \( f(x) = u(x) \cdot v(x) \), then \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) \] Let: \[ u(x) = x \quad \text{and} \quad v(x) = (3x + 2)^2 \] First, find \( u'(x) \) and \( v'(x) \): 1. **Differentiate \( u(x) = x \):** \[ u'(x) = 1 \] 2. **Differentiate \( v(x) = (3x + 2)^2 \) using the **Chain Rule**: \[ v'(x) = 2(3x + 2) \cdot \frac{d}{dx}(3x + 2) = 2(3x + 2) \cdot 3 = 6(3x + 2) \] Now, apply the Product Rule: \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 1 \cdot (3x + 2)^2 + x \cdot 6(3x + 2) \] Simplify the expression: \[ f'(x) = (3x + 2)^2 + 6x(3x + 2) \] \[ f'(x) = (3x + 2)\left[(3x + 2) + 6x\right] = (3x + 2)(9x + 2) \] **Final Answer:** \[ f'(x) = (3x + 2)(9x + 2) \] --- ### Problem 1(b): **Differentiate** \( f(x) = (x + 1)(x - 3)^2 \) **with respect to** \( x \). **Solution:** Again, we'll use the **Product Rule**. Let: \[ u(x) = x + 1 \quad \text{and} \quad v(x) = (x - 3)^2 \] First, find \( u'(x) \) and \( v'(x) \): 1. **Differentiate \( u(x) = x + 1 \):** \[ u'(x) = 1 \] 2. **Differentiate \( v(x) = (x - 3)^2 \) using the **Chain Rule**: \[ v'(x) = 2(x - 3) \cdot \frac{d}{dx}(x - 3) = 2(x - 3) \cdot 1 = 2(x - 3) \] Apply the Product Rule: \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 1 \cdot (x - 3)^2 + (x + 1) \cdot 2(x - 3) \] Factor out \( (x - 3) \): \[ f'(x) = (x - 3)\left[(x - 3) + 2(x + 1)\right] \] \[ f'(x) = (x - 3)(x - 3 + 2x + 2) = (x - 3)(3x - 1) \] **Final Answer:** \[ f'(x) = (x - 3)(3x - 1) \] --- ### Problem 1(c): **Differentiate** \( f(x) = (2 - 3x)(4x + 1)^4 \) **with respect to** \( x \). **Solution:** We'll employ the **Product Rule** once more. Let: \[ u(x) = 2 - 3x \quad \text{and} \quad v(x) = (4x + 1)^4 \] First, find \( u'(x) \) and \( v'(x) \): 1. **Differentiate \( u(x) = 2 - 3x \):** \[ u'(x) = -3 \] 2. **Differentiate \( v(x) = (4x + 1)^4 \) using the **Chain Rule**: \[ v'(x) = 4(4x + 1)^3 \cdot \frac{d}{dx}(4x + 1) = 4(4x + 1)^3 \cdot 4 = 16(4x + 1)^3 \] Apply the Product Rule: \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) = (-3)(4x + 1)^4 + (2 - 3x) \cdot 16(4x + 1)^3 \] Factor out \( (4x + 1)^3 \): \[ f'(x) = (4x + 1)^3 \left[ -3(4x + 1) + 16(2 - 3x) \right] \] \[ = (4x + 1)^3 \left[ -12x - 3 + 32 - 48x \right] \] \[ = (4x + 1)^3 (-60x + 29) \] **Final Answer:** \[ f'(x) = (4x + 1)^3 (29 - 60x) \] --- ### Problem 1(d): **Differentiate** \( f(x) = (2 + x)^2 (x^2 + 2) \) **with respect to** \( x \). **Solution:** We'll use the **Product Rule**. Let: \[ u(x) = (2 + x)^2 \quad \text{and} \quad v(x) = x^2 + 2 \] First, find \( u'(x) \) and \( v'(x) \): 1. **Differentiate \( u(x) = (2 + x)^2 \) using the **Chain Rule**: \[ u'(x) = 2(2 + x) \cdot \frac{d}{dx}(2 + x) = 2(2 + x) \cdot 1 = 2(2 + x) \] 2. **Differentiate \( v(x) = x^2 + 2 \):** \[ v'(x) = 2x \] Apply the Product Rule: \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 2(2 + x)(x^2 + 2) + (2 + x)^2 \cdot 2x \] Factor out \( 2(2 + x) \): \[ f'(x) = 2(2 + x)\left[ x^2 + 2 + x(2 + x) \right] \] \[ = 2(2 + x)\left[ x^2 + 2 + 2x + x^2 \right] \] \[ = 2(2 + x)(2x^2 + 2x + 2) \] We can factor out a 2 from the quadratic polynomial: \[ = 2(2 + x) \cdot 2(x^2 + x + 1) = 4(2 + x)(x^2 + x + 1) \] **Final Answer:** \[ f'(x) = 4(x + 2)(x^2 + x + 1) \] --- **Summary of Derivatives:** 1. **(a)** \( \displaystyle f'(x) = (3x + 2)(9x + 2) \) 2. **(b)** \( \displaystyle f'(x) = (x - 3)(3x - 1) \) 3. **(c)** \( \displaystyle f'(x) = (4x + 1)^3 (29 - 60x) \) 4. **(d)** \( \displaystyle f'(x) = 4(x + 2)(x^2 + x + 1) \) If you have any further questions or need additional clarification on any of the steps, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To differentiate the given functions with respect to \( x \), we will use the product rule and the chain rule where necessary. (a) For \( y = x(3x+2)^{2} \): Using the product rule: \[ y' = (3x+2)^{2} + x \cdot 2(3x+2) \cdot 3 = (3x+2)^{2} + 6x(3x+2) = (3x+2)(3x+2 + 6x) = (3x+2)(9x+2) \] (b) For \( y = (x+1)(x-3)^{2} \): Using the product rule: \[ y' = (x-3)^{2} + (x+1) \cdot 2(x-3) \cdot 1 = (x-3)^{2} + 2(x+1)(x-3) = (x-3)(x-3 + 2(x+1)) = (x-3)(x + 2x - 1) = (x-3)(3x-1) \] (c) For \( y = (2-3x)(4x+1)^{4} \): Using the product rule: \[ y' = (2-3x) \cdot 4(4x+1)^{3} \cdot 4 - 3(4x+1)^{4} = 16(2-3x)(4x+1)^{3} - 12(4x+1)^{4} \] (d) For \( y = (2+x)^{2}(x^{2}+2) \): Using the product rule: \[ y' = (2+x)^{2} \cdot 2x + (x^{2}+2) \cdot 2(2+x) = 2x(2+x)^{2} + 2(2+x)(x^{2}+2) = 2(2+x) \left[x(2+x) + (x^{2}+2)\right] \] And there you have it! Each of these functions is now differentiated with respect to \( x \)!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy