Question
upstudy study bank question image url

a) Решите уравнение \( \cos x+2 \cos \left(2 x-\frac{\pi}{3}\right)=\sqrt{3} \sin 2 x-1 \) б) Найдите все корни этого уравнения, принадлежашие отрезку \( \left[-5 \pi ;-\frac{7 \pi}{2}\right] \).

Ask by Wilson Li. in Russia
Jan 12,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Корни уравнения на отрезке \([-5\pi; -\frac{7\pi}{2}]\) равны: \[ x = -\frac{9\pi}{2}, -\frac{7\pi}{2}, -\frac{10\pi}{3}, -\frac{14\pi}{3} \]

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(x\right)+2\cos\left(2x-\frac{\pi }{3}\right)=\sqrt{3}\times \sin\left(2x\right)-1\) - step1: Use the periodicity identities: \(\cos\left(x\right)+2\cos\left(2x+\frac{5\pi }{3}\right)=\sqrt{3}\times \sin\left(2x\right)-1\) - step2: Move the expression to the left side: \(\cos\left(x\right)+2\cos\left(2x+\frac{5\pi }{3}\right)-\left(\sqrt{3}\times \sin\left(2x\right)-1\right)=0\) - step3: Calculate: \(\cos\left(x\right)+2\cos\left(2x+\frac{5\pi }{3}\right)-\sqrt{3}\times \sin\left(2x\right)+1=0\) - step4: Simplify: \(\cos\left(x\right)+\cos^{2}\left(x\right)-\sin^{2}\left(x\right)+1=0\) - step5: Solve using substitution: \(\frac{1-\tan^{2}\left(\frac{1}{2}x\right)}{1+\tan^{2}\left(\frac{1}{2}x\right)}+\left(\frac{1-\tan^{2}\left(\frac{1}{2}x\right)}{1+\tan^{2}\left(\frac{1}{2}x\right)}\right)^{2}-\left(\frac{2\tan\left(\frac{1}{2}x\right)}{1+\tan^{2}\left(\frac{1}{2}x\right)}\right)^{2}+1=0\) - step6: Solve using substitution: \(\frac{1-t^{2}}{1+t^{2}}+\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}-\left(\frac{2t}{1+t^{2}}\right)^{2}+1=0\) - step7: Multiply both sides of the equation by LCD: \(\left(\frac{1-t^{2}}{1+t^{2}}+\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}-\left(\frac{2t}{1+t^{2}}\right)^{2}+1\right)\left(1+2t^{2}+t^{4}\right)=0\times \left(1+2t^{2}+t^{4}\right)\) - step8: Simplify the equation: \(3-4t^{2}+t^{4}=0\) - step9: Factor the expression: \(\left(1-t\right)\left(1+t\right)\left(3-t^{2}\right)=0\) - step10: Separate into possible cases: \(\begin{align}&1-t=0\\&1+t=0\\&3-t^{2}=0\end{align}\) - step11: Solve the equation: \(\begin{align}&t=1\\&t=-1\\&t=\sqrt{3}\\&t=-\sqrt{3}\end{align}\) - step12: Substitute back: \(\begin{align}&\tan\left(\frac{1}{2}x\right)=1\\&\tan\left(\frac{1}{2}x\right)=-1\\&\tan\left(\frac{1}{2}x\right)=\sqrt{3}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\) - step13: Calculate: \(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&\tan\left(\frac{1}{2}x\right)=-1\\&\tan\left(\frac{1}{2}x\right)=\sqrt{3}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\) - step14: Calculate: \(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&\tan\left(\frac{1}{2}x\right)=\sqrt{3}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\) - step15: Calculate: \(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{2\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\) - step16: Calculate: \(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{2\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{4\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step17: Check if \(x=\pi+2k\pi,k\in\mathbb{Z}\) is a solution\(:\) \(\cos\left(\pi +2k\pi\right)+2\cos\left(2\left(\pi +2k\pi\right)-\frac{\pi }{3}\right)=\sqrt{3}\times \sin\left(2\left(\pi +2k\pi\right)\right)-1\) - step18: Calculate: \(\cos\left(\pi \right)+2\cos\left(2\pi -\frac{\pi }{3}\right)=\sqrt{3}\times \sin\left(2\pi \right)-1\) - step19: Simplify: \(0=-1\) - step20: Check the equality: \(\textrm{false}\) - step21: Since \(x=\pi+2k\pi,k\in\mathbb{Z}\) is not a solution,don't include it\(:\) \(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{2\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{4\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step22: Find the union: \(x=\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{2\pi }{3}+2k\pi \\\frac{4\pi }{3}+2k\pi \end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( x=\frac{\pi }{2}+k\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(x=\frac{\pi }{2}+k\pi \) - step1: Reorder the terms: \(x=\frac{\pi }{2}+\pi k\) - step2: Swap the sides: \(\frac{\pi }{2}+\pi k=x\) - step3: Move the constant to the right side: \(\pi k=x-\frac{\pi }{2}\) - step4: Subtract the terms: \(\pi k=\frac{2x-\pi }{2}\) - step5: Multiply by the reciprocal: \(\pi k\times \frac{1}{\pi }=\frac{2x-\pi }{2}\times \frac{1}{\pi }\) - step6: Multiply: \(k=\frac{2x-\pi }{2\pi }\) Solve the equation \( x=\frac{2\pi }{3}+2k\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(x=\frac{2\pi }{3}+2k\pi \) - step1: Multiply the numbers: \(x=\frac{2\pi }{3}+2\pi k\) - step2: Swap the sides: \(\frac{2\pi }{3}+2\pi k=x\) - step3: Move the constant to the right side: \(2\pi k=x-\frac{2\pi }{3}\) - step4: Subtract the terms: \(2\pi k=\frac{3x-2\pi }{3}\) - step5: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=\frac{3x-2\pi }{3}\times \frac{1}{2\pi }\) - step6: Multiply: \(k=\frac{3x-2\pi }{6\pi }\) Solve the equation \( x=\frac{4\pi }{3}+2k\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(x=\frac{4\pi }{3}+2k\pi \) - step1: Multiply the numbers: \(x=\frac{4\pi }{3}+2\pi k\) - step2: Swap the sides: \(\frac{4\pi }{3}+2\pi k=x\) - step3: Move the constant to the right side: \(2\pi k=x-\frac{4\pi }{3}\) - step4: Subtract the terms: \(2\pi k=\frac{3x-4\pi }{3}\) - step5: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=\frac{3x-4\pi }{3}\times \frac{1}{2\pi }\) - step6: Multiply: \(k=\frac{3x-4\pi }{6\pi }\) Solve the equation \( k\pi + \frac{\pi}{2} = -5\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(k\pi +\frac{\pi }{2}=-5\pi \) - step1: Reorder the terms: \(\pi k+\frac{\pi }{2}=-5\pi \) - step2: Move the constant to the right side: \(\pi k=-5\pi -\frac{\pi }{2}\) - step3: Subtract the numbers: \(\pi k=-\frac{11\pi }{2}\) - step4: Multiply by the reciprocal: \(\pi k\times \frac{1}{\pi }=-\frac{11\pi }{2}\times \frac{1}{\pi }\) - step5: Multiply: \(k=-\frac{11}{2}\) Solve the equation \( k\pi + \frac{\pi}{2} = -\frac{7\pi}{2} \). Solve the equation by following steps: - step0: Solve for \(k\): \(k\pi +\frac{\pi }{2}=-\frac{7\pi }{2}\) - step1: Reorder the terms: \(\pi k+\frac{\pi }{2}=-\frac{7\pi }{2}\) - step2: Move the constant to the right side: \(\pi k=-\frac{7\pi }{2}-\frac{\pi }{2}\) - step3: Subtract the numbers: \(\pi k=-4\pi \) - step4: Divide both sides: \(\frac{\pi k}{\pi }=\frac{-4\pi }{\pi }\) - step5: Divide the numbers: \(k=-4\) Solve the equation \( 2k\pi + \frac{4\pi}{3} = -5\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(2k\pi +\frac{4\pi }{3}=-5\pi \) - step1: Multiply the numbers: \(2\pi k+\frac{4\pi }{3}=-5\pi \) - step2: Move the constant to the right side: \(2\pi k=-5\pi -\frac{4\pi }{3}\) - step3: Subtract the numbers: \(2\pi k=-\frac{19\pi }{3}\) - step4: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=-\frac{19\pi }{3}\times \frac{1}{2\pi }\) - step5: Multiply: \(k=-\frac{19}{6}\) Solve the equation \( 2k\pi + \frac{2\pi}{3} = -\frac{7\pi}{2} \). Solve the equation by following steps: - step0: Solve for \(k\): \(2k\pi +\frac{2\pi }{3}=-\frac{7\pi }{2}\) - step1: Multiply the numbers: \(2\pi k+\frac{2\pi }{3}=-\frac{7\pi }{2}\) - step2: Move the constant to the right side: \(2\pi k=-\frac{7\pi }{2}-\frac{2\pi }{3}\) - step3: Subtract the numbers: \(2\pi k=-\frac{25\pi }{6}\) - step4: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=-\frac{25\pi }{6}\times \frac{1}{2\pi }\) - step5: Multiply: \(k=-\frac{25}{12}\) Solve the equation \( 2k\pi + \frac{4\pi}{3} = -\frac{7\pi}{2} \). Solve the equation by following steps: - step0: Solve for \(k\): \(2k\pi +\frac{4\pi }{3}=-\frac{7\pi }{2}\) - step1: Multiply the numbers: \(2\pi k+\frac{4\pi }{3}=-\frac{7\pi }{2}\) - step2: Move the constant to the right side: \(2\pi k=-\frac{7\pi }{2}-\frac{4\pi }{3}\) - step3: Subtract the numbers: \(2\pi k=-\frac{29\pi }{6}\) - step4: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=-\frac{29\pi }{6}\times \frac{1}{2\pi }\) - step5: Multiply: \(k=-\frac{29}{12}\) Solve the equation \( 2k\pi + \frac{2\pi}{3} = -5\pi \). Solve the equation by following steps: - step0: Solve for \(k\): \(2k\pi +\frac{2\pi }{3}=-5\pi \) - step1: Multiply the numbers: \(2\pi k+\frac{2\pi }{3}=-5\pi \) - step2: Move the constant to the right side: \(2\pi k=-5\pi -\frac{2\pi }{3}\) - step3: Subtract the numbers: \(2\pi k=-\frac{17\pi }{3}\) - step4: Multiply by the reciprocal: \(2\pi k\times \frac{1}{2\pi }=-\frac{17\pi }{3}\times \frac{1}{2\pi }\) - step5: Multiply: \(k=-\frac{17}{6}\) ### Решение уравнения a) Мы имеем уравнение: \[ \cos x + 2 \cos \left(2 x - \frac{\pi}{3}\right) = \sqrt{3} \sin 2 x - 1 \] Решение этого уравнения даёт следующие корни: \[ x = \left\{ \begin{array}{l} \frac{\pi }{2} + k\pi \\ \frac{2\pi }{3} + 2k\pi \\ \frac{4\pi }{3} + 2k\pi \end{array} \right., \quad k \in \mathbb{Z} \] ### Поиск корней на заданном отрезке Теперь найдем все корни, принадлежащие отрезку \([-5\pi; -\frac{7\pi}{2}]\). 1. **Для первого корня**: \(x = \frac{\pi}{2} + k\pi\) - Решим уравнения: - \(\frac{\pi}{2} + k\pi = -5\pi\) - \(\frac{\pi}{2} + k\pi = -\frac{7\pi}{2}\) Решения: - \(k = -\frac{11}{2}\) или \(k = -5.5\) - \(k = -4\) 2. **Для второго корня**: \(x = \frac{2\pi}{3} + 2k\pi\) - Решим уравнения: - \(\frac{2\pi}{3} + 2k\pi = -5\pi\) - \(\frac{2\pi}{3} + 2k\pi = -\frac{7\pi}{2}\) Решения: - \(k = -\frac{17}{6}\) или \(k = -2.83\) - \(k = -\frac{25}{12}\) или \(k = -2.08\) 3. **Для третьего корня**: \(x = \frac{4\pi}{3} + 2k\pi\) - Решим уравнения: - \(\frac{4\pi}{3} + 2k\pi = -5\pi\) - \(\frac{4\pi}{3} + 2k\pi = -\frac{7\pi}{2}\) Решения: - \(k = -\frac{19}{6}\) или \(k = -3.16\) - \(k = -\frac{29}{12}\) или \(k = -2.41\) ### Итоговые корни Теперь подставим найденные значения \(k\) обратно в уравнения для \(x\): 1. Для \(k = -5\): \[ x = \frac{\pi}{2} - 5\pi = -\frac{9\pi}{2} \] 2. Для \(k = -4\): \[ x = \frac{\pi}{2} - 4\pi = -\frac{7\pi}{2} \] 3. Для \(k = -2\): \[ x = \frac{2\pi}{3} - 4\pi = -\frac{10\pi}{3} \] 4. Для \(k = -3\): \[ x = \frac{4\pi}{3} - 6\pi = -\frac{14\pi}{3} \] Таким образом, корни уравнения, принадлежащие отрезку \([-5\pi; -\frac{7\pi}{2}]\): \[ x = -\frac{9\pi}{2}, -\frac{7\pi}{2}, -\frac{10\pi}{3}, -\frac{14\pi}{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Для начала решим уравнение \( \cos x + 2 \cos \left(2 x - \frac{\pi}{3}\right) = \sqrt{3} \sin 2 x - 1 \). Подставим выражение для \( \cos\left(2 x - \frac{\pi}{3}\right) \) в терминах тригонометрических функций. Мы знаем, что \( \cos(a - b) = \cos a \cos b + \sin a \sin b \), поэтому: \[ \cos \left(2x - \frac{\pi}{3}\right) = \cos(2x) \cos\left(\frac{\pi}{3}\right) + \sin(2x) \sin\left(\frac{\pi}{3}\right) = \frac{1}{2} \cos(2x) + \frac{\sqrt{3}}{2} \sin(2x) \] Теперь перепишем уравнение: \[ \cos x + 2 \left(\frac{1}{2} \cos(2x) + \frac{\sqrt{3}}{2} \sin(2x)\right) = \sqrt{3} \sin 2 x - 1 \] Упрощая, получаем: \[ \cos x + \cos(2x) + \sqrt{3} \sin(2x) = \sqrt{3} \sin 2 x - 1 \] Приведем подобные слагаемые: \[ \cos x + \cos(2x) + 1 = 0 \] Теперь воспользуемся тригонометрическими идентичностями для упрощения. Далее, чтобы найти корни в заданном диапазоне \( \left[-5\pi; -\frac{7\pi}{2}\right] \), мы можем вычислить значения функции и определить, где она равна нулю. Поиск корней может быть выполнен, например, с помощью графического метода или численного поиска. В результате будет несколько корней, которые следует проверить, принадлежит ли каждое значение указанному интервалу. В итоге, все найденные степени угла следует нормализовать, чтобы убедиться в принадлежности к нужному интервалу. Финальное решение будет заключаться в том, что корни уравнения могут быть выражены в виде \( x = - \frac{7\pi}{2} + k \cdot 2\pi \) для соответствующих целых \( k \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy