Answer
Корни уравнения на отрезке \([-5\pi; -\frac{7\pi}{2}]\) равны:
\[
x = -\frac{9\pi}{2}, -\frac{7\pi}{2}, -\frac{10\pi}{3}, -\frac{14\pi}{3}
\]
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\cos\left(x\right)+2\cos\left(2x-\frac{\pi }{3}\right)=\sqrt{3}\times \sin\left(2x\right)-1\)
- step1: Use the periodicity identities:
\(\cos\left(x\right)+2\cos\left(2x+\frac{5\pi }{3}\right)=\sqrt{3}\times \sin\left(2x\right)-1\)
- step2: Move the expression to the left side:
\(\cos\left(x\right)+2\cos\left(2x+\frac{5\pi }{3}\right)-\left(\sqrt{3}\times \sin\left(2x\right)-1\right)=0\)
- step3: Calculate:
\(\cos\left(x\right)+2\cos\left(2x+\frac{5\pi }{3}\right)-\sqrt{3}\times \sin\left(2x\right)+1=0\)
- step4: Simplify:
\(\cos\left(x\right)+\cos^{2}\left(x\right)-\sin^{2}\left(x\right)+1=0\)
- step5: Solve using substitution:
\(\frac{1-\tan^{2}\left(\frac{1}{2}x\right)}{1+\tan^{2}\left(\frac{1}{2}x\right)}+\left(\frac{1-\tan^{2}\left(\frac{1}{2}x\right)}{1+\tan^{2}\left(\frac{1}{2}x\right)}\right)^{2}-\left(\frac{2\tan\left(\frac{1}{2}x\right)}{1+\tan^{2}\left(\frac{1}{2}x\right)}\right)^{2}+1=0\)
- step6: Solve using substitution:
\(\frac{1-t^{2}}{1+t^{2}}+\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}-\left(\frac{2t}{1+t^{2}}\right)^{2}+1=0\)
- step7: Multiply both sides of the equation by LCD:
\(\left(\frac{1-t^{2}}{1+t^{2}}+\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}-\left(\frac{2t}{1+t^{2}}\right)^{2}+1\right)\left(1+2t^{2}+t^{4}\right)=0\times \left(1+2t^{2}+t^{4}\right)\)
- step8: Simplify the equation:
\(3-4t^{2}+t^{4}=0\)
- step9: Factor the expression:
\(\left(1-t\right)\left(1+t\right)\left(3-t^{2}\right)=0\)
- step10: Separate into possible cases:
\(\begin{align}&1-t=0\\&1+t=0\\&3-t^{2}=0\end{align}\)
- step11: Solve the equation:
\(\begin{align}&t=1\\&t=-1\\&t=\sqrt{3}\\&t=-\sqrt{3}\end{align}\)
- step12: Substitute back:
\(\begin{align}&\tan\left(\frac{1}{2}x\right)=1\\&\tan\left(\frac{1}{2}x\right)=-1\\&\tan\left(\frac{1}{2}x\right)=\sqrt{3}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\)
- step13: Calculate:
\(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&\tan\left(\frac{1}{2}x\right)=-1\\&\tan\left(\frac{1}{2}x\right)=\sqrt{3}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\)
- step14: Calculate:
\(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&\tan\left(\frac{1}{2}x\right)=\sqrt{3}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\)
- step15: Calculate:
\(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{2\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&\tan\left(\frac{1}{2}x\right)=-\sqrt{3}\end{align}\)
- step16: Calculate:
\(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{2\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{4\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step17: Check if \(x=\pi+2k\pi,k\in\mathbb{Z}\) is a solution\(:\)
\(\cos\left(\pi +2k\pi\right)+2\cos\left(2\left(\pi +2k\pi\right)-\frac{\pi }{3}\right)=\sqrt{3}\times \sin\left(2\left(\pi +2k\pi\right)\right)-1\)
- step18: Calculate:
\(\cos\left(\pi \right)+2\cos\left(2\pi -\frac{\pi }{3}\right)=\sqrt{3}\times \sin\left(2\pi \right)-1\)
- step19: Simplify:
\(0=-1\)
- step20: Check the equality:
\(\textrm{false}\)
- step21: Since \(x=\pi+2k\pi,k\in\mathbb{Z}\) is not a solution,don't include it\(:\)
\(\begin{align}&x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{2\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{4\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step22: Find the union:
\(x=\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{2\pi }{3}+2k\pi \\\frac{4\pi }{3}+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( x=\frac{\pi }{2}+k\pi \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(x=\frac{\pi }{2}+k\pi \)
- step1: Reorder the terms:
\(x=\frac{\pi }{2}+\pi k\)
- step2: Swap the sides:
\(\frac{\pi }{2}+\pi k=x\)
- step3: Move the constant to the right side:
\(\pi k=x-\frac{\pi }{2}\)
- step4: Subtract the terms:
\(\pi k=\frac{2x-\pi }{2}\)
- step5: Multiply by the reciprocal:
\(\pi k\times \frac{1}{\pi }=\frac{2x-\pi }{2}\times \frac{1}{\pi }\)
- step6: Multiply:
\(k=\frac{2x-\pi }{2\pi }\)
Solve the equation \( x=\frac{2\pi }{3}+2k\pi \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(x=\frac{2\pi }{3}+2k\pi \)
- step1: Multiply the numbers:
\(x=\frac{2\pi }{3}+2\pi k\)
- step2: Swap the sides:
\(\frac{2\pi }{3}+2\pi k=x\)
- step3: Move the constant to the right side:
\(2\pi k=x-\frac{2\pi }{3}\)
- step4: Subtract the terms:
\(2\pi k=\frac{3x-2\pi }{3}\)
- step5: Multiply by the reciprocal:
\(2\pi k\times \frac{1}{2\pi }=\frac{3x-2\pi }{3}\times \frac{1}{2\pi }\)
- step6: Multiply:
\(k=\frac{3x-2\pi }{6\pi }\)
Solve the equation \( x=\frac{4\pi }{3}+2k\pi \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(x=\frac{4\pi }{3}+2k\pi \)
- step1: Multiply the numbers:
\(x=\frac{4\pi }{3}+2\pi k\)
- step2: Swap the sides:
\(\frac{4\pi }{3}+2\pi k=x\)
- step3: Move the constant to the right side:
\(2\pi k=x-\frac{4\pi }{3}\)
- step4: Subtract the terms:
\(2\pi k=\frac{3x-4\pi }{3}\)
- step5: Multiply by the reciprocal:
\(2\pi k\times \frac{1}{2\pi }=\frac{3x-4\pi }{3}\times \frac{1}{2\pi }\)
- step6: Multiply:
\(k=\frac{3x-4\pi }{6\pi }\)
Solve the equation \( k\pi + \frac{\pi}{2} = -5\pi \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(k\pi +\frac{\pi }{2}=-5\pi \)
- step1: Reorder the terms:
\(\pi k+\frac{\pi }{2}=-5\pi \)
- step2: Move the constant to the right side:
\(\pi k=-5\pi -\frac{\pi }{2}\)
- step3: Subtract the numbers:
\(\pi k=-\frac{11\pi }{2}\)
- step4: Multiply by the reciprocal:
\(\pi k\times \frac{1}{\pi }=-\frac{11\pi }{2}\times \frac{1}{\pi }\)
- step5: Multiply:
\(k=-\frac{11}{2}\)
Solve the equation \( k\pi + \frac{\pi}{2} = -\frac{7\pi}{2} \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(k\pi +\frac{\pi }{2}=-\frac{7\pi }{2}\)
- step1: Reorder the terms:
\(\pi k+\frac{\pi }{2}=-\frac{7\pi }{2}\)
- step2: Move the constant to the right side:
\(\pi k=-\frac{7\pi }{2}-\frac{\pi }{2}\)
- step3: Subtract the numbers:
\(\pi k=-4\pi \)
- step4: Divide both sides:
\(\frac{\pi k}{\pi }=\frac{-4\pi }{\pi }\)
- step5: Divide the numbers:
\(k=-4\)
Solve the equation \( 2k\pi + \frac{4\pi}{3} = -5\pi \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(2k\pi +\frac{4\pi }{3}=-5\pi \)
- step1: Multiply the numbers:
\(2\pi k+\frac{4\pi }{3}=-5\pi \)
- step2: Move the constant to the right side:
\(2\pi k=-5\pi -\frac{4\pi }{3}\)
- step3: Subtract the numbers:
\(2\pi k=-\frac{19\pi }{3}\)
- step4: Multiply by the reciprocal:
\(2\pi k\times \frac{1}{2\pi }=-\frac{19\pi }{3}\times \frac{1}{2\pi }\)
- step5: Multiply:
\(k=-\frac{19}{6}\)
Solve the equation \( 2k\pi + \frac{2\pi}{3} = -\frac{7\pi}{2} \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(2k\pi +\frac{2\pi }{3}=-\frac{7\pi }{2}\)
- step1: Multiply the numbers:
\(2\pi k+\frac{2\pi }{3}=-\frac{7\pi }{2}\)
- step2: Move the constant to the right side:
\(2\pi k=-\frac{7\pi }{2}-\frac{2\pi }{3}\)
- step3: Subtract the numbers:
\(2\pi k=-\frac{25\pi }{6}\)
- step4: Multiply by the reciprocal:
\(2\pi k\times \frac{1}{2\pi }=-\frac{25\pi }{6}\times \frac{1}{2\pi }\)
- step5: Multiply:
\(k=-\frac{25}{12}\)
Solve the equation \( 2k\pi + \frac{4\pi}{3} = -\frac{7\pi}{2} \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(2k\pi +\frac{4\pi }{3}=-\frac{7\pi }{2}\)
- step1: Multiply the numbers:
\(2\pi k+\frac{4\pi }{3}=-\frac{7\pi }{2}\)
- step2: Move the constant to the right side:
\(2\pi k=-\frac{7\pi }{2}-\frac{4\pi }{3}\)
- step3: Subtract the numbers:
\(2\pi k=-\frac{29\pi }{6}\)
- step4: Multiply by the reciprocal:
\(2\pi k\times \frac{1}{2\pi }=-\frac{29\pi }{6}\times \frac{1}{2\pi }\)
- step5: Multiply:
\(k=-\frac{29}{12}\)
Solve the equation \( 2k\pi + \frac{2\pi}{3} = -5\pi \).
Solve the equation by following steps:
- step0: Solve for \(k\):
\(2k\pi +\frac{2\pi }{3}=-5\pi \)
- step1: Multiply the numbers:
\(2\pi k+\frac{2\pi }{3}=-5\pi \)
- step2: Move the constant to the right side:
\(2\pi k=-5\pi -\frac{2\pi }{3}\)
- step3: Subtract the numbers:
\(2\pi k=-\frac{17\pi }{3}\)
- step4: Multiply by the reciprocal:
\(2\pi k\times \frac{1}{2\pi }=-\frac{17\pi }{3}\times \frac{1}{2\pi }\)
- step5: Multiply:
\(k=-\frac{17}{6}\)
### Решение уравнения
a) Мы имеем уравнение:
\[
\cos x + 2 \cos \left(2 x - \frac{\pi}{3}\right) = \sqrt{3} \sin 2 x - 1
\]
Решение этого уравнения даёт следующие корни:
\[
x = \left\{
\begin{array}{l}
\frac{\pi }{2} + k\pi \\
\frac{2\pi }{3} + 2k\pi \\
\frac{4\pi }{3} + 2k\pi
\end{array}
\right., \quad k \in \mathbb{Z}
\]
### Поиск корней на заданном отрезке
Теперь найдем все корни, принадлежащие отрезку \([-5\pi; -\frac{7\pi}{2}]\).
1. **Для первого корня**: \(x = \frac{\pi}{2} + k\pi\)
- Решим уравнения:
- \(\frac{\pi}{2} + k\pi = -5\pi\)
- \(\frac{\pi}{2} + k\pi = -\frac{7\pi}{2}\)
Решения:
- \(k = -\frac{11}{2}\) или \(k = -5.5\)
- \(k = -4\)
2. **Для второго корня**: \(x = \frac{2\pi}{3} + 2k\pi\)
- Решим уравнения:
- \(\frac{2\pi}{3} + 2k\pi = -5\pi\)
- \(\frac{2\pi}{3} + 2k\pi = -\frac{7\pi}{2}\)
Решения:
- \(k = -\frac{17}{6}\) или \(k = -2.83\)
- \(k = -\frac{25}{12}\) или \(k = -2.08\)
3. **Для третьего корня**: \(x = \frac{4\pi}{3} + 2k\pi\)
- Решим уравнения:
- \(\frac{4\pi}{3} + 2k\pi = -5\pi\)
- \(\frac{4\pi}{3} + 2k\pi = -\frac{7\pi}{2}\)
Решения:
- \(k = -\frac{19}{6}\) или \(k = -3.16\)
- \(k = -\frac{29}{12}\) или \(k = -2.41\)
### Итоговые корни
Теперь подставим найденные значения \(k\) обратно в уравнения для \(x\):
1. Для \(k = -5\):
\[
x = \frac{\pi}{2} - 5\pi = -\frac{9\pi}{2}
\]
2. Для \(k = -4\):
\[
x = \frac{\pi}{2} - 4\pi = -\frac{7\pi}{2}
\]
3. Для \(k = -2\):
\[
x = \frac{2\pi}{3} - 4\pi = -\frac{10\pi}{3}
\]
4. Для \(k = -3\):
\[
x = \frac{4\pi}{3} - 6\pi = -\frac{14\pi}{3}
\]
Таким образом, корни уравнения, принадлежащие отрезку \([-5\pi; -\frac{7\pi}{2}]\):
\[
x = -\frac{9\pi}{2}, -\frac{7\pi}{2}, -\frac{10\pi}{3}, -\frac{14\pi}{3}
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution