Simplify each sum \( (3 \) points each \( ) \). 15) \( (2+n)+\left(5+6 n^{2}+2 n\right) \) Simplify each difference \( (3 \) points each \( ) \) 17) \( \left(7 p^{2}+6 p\right)-\left(3 p^{2}+2 p\right) \) Find each product \( \left(3 p^{3}-5\right)+\left(2 p^{2}-2 p^{3}+3\right) \) 19) \( (3 v-4)\left(4 v^{2}-2 v+1\right) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expressions: 15) For the sum \( (2+n)+\left(5+6 n^{2}+2 n\right) \), combine like terms: \[ 2+n+5+6n^2+2n = 6n^2 + (1+2)n + (2+5) = 6n^2 + 3n + 7. \] 17) For the difference \( \left(7 p^{2}+6 p\right)-\left(3 p^{2}+2 p\right) \), distribute the subtraction and combine like terms: \[ 7p^2 + 6p - 3p^2 - 2p = (7-3)p^2 + (6-2)p = 4p^2 + 4p. \] 18) For the product \( (3 p^{3}-5)+\left(2 p^{2}-2 p^{3}+3\right) \), again combine like terms: \[ (3p^3 - 2p^3) + 2p^2 + (-5 + 3) = (3 - 2)p^3 + 2p^2 - 2 = p^3 + 2p^2 - 2. \] 19) For the product \( (3 v-4)(4 v^{2}-2 v+1) \), apply the distributive property: \[ 3v(4v^2) + 3v(-2v) + 3v(1) - 4(4v^2) - 4(-2v) - 4(1) = 12v^3 - 6v^2 + 3v - 16v^2 + 8v - 4. \] Combine like terms to get: \[ 12v^3 + (-6 - 16)v^2 + (3 + 8)v - 4 = 12v^3 - 22v^2 + 11v - 4. \]