Question
upstudy study bank question image url

Simplify each sum \( (3 \) points each \( ) \). 15) \( (2+n)+\left(5+6 n^{2}+2 n\right) \) Simplify each difference \( (3 \) points each \( ) \) 17) \( \left(7 p^{2}+6 p\right)-\left(3 p^{2}+2 p\right) \) Find each product \( \left(3 p^{3}-5\right)+\left(2 p^{2}-2 p^{3}+3\right) \) 19) \( (3 v-4)\left(4 v^{2}-2 v+1\right) \)

Ask by O'Quinn Medina. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

15) \( 6n^{2} + 3n + 7 \) 17) \( 4p^{2} + 4p \) 19) \( 12v^{3} - 22v^{2} + 11v - 4 \)

Solution

Claro, a continuación se simplifican las expresiones solicitadas: --- **15) Simplificar la suma \( (2 + n) + (5 + 6n^{2} + 2n) \):** \[ \begin{align*} (2 + n) + (5 + 6n^{2} + 2n) &= 2 + n + 5 + 6n^{2} + 2n \\ &= 6n^{2} + (n + 2n) + (2 + 5) \\ &= 6n^{2} + 3n + 7 \end{align*} \] **Respuesta simplificada:** \[ 6n^{2} + 3n + 7 \] --- **17) Simplificar la diferencia \( (7p^{2} + 6p) - (3p^{2} + 2p) \):** \[ \begin{align*} (7p^{2} + 6p) - (3p^{2} + 2p) &= 7p^{2} + 6p - 3p^{2} - 2p \\ &= (7p^{2} - 3p^{2}) + (6p - 2p) \\ &= 4p^{2} + 4p \end{align*} \] **Respuesta simplificada:** \[ 4p^{2} + 4p \] --- **19) Encontrar el producto \( (3v - 4)(4v^{2} - 2v + 1) \):** \[ \begin{align*} (3v - 4)(4v^{2} - 2v + 1) &= 3v \cdot 4v^{2} + 3v \cdot (-2v) + 3v \cdot 1 \\ &\quad - 4 \cdot 4v^{2} - 4 \cdot (-2v) - 4 \cdot 1 \\ &= 12v^{3} - 6v^{2} + 3v - 16v^{2} + 8v - 4 \\ &= 12v^{3} + (-6v^{2} - 16v^{2}) + (3v + 8v) - 4 \\ &= 12v^{3} - 22v^{2} + 11v - 4 \end{align*} \] **Respuesta simplificada:** \[ 12v^{3} - 22v^{2} + 11v - 4 \] ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expressions: 15) For the sum \( (2+n)+\left(5+6 n^{2}+2 n\right) \), combine like terms: \[ 2+n+5+6n^2+2n = 6n^2 + (1+2)n + (2+5) = 6n^2 + 3n + 7. \] 17) For the difference \( \left(7 p^{2}+6 p\right)-\left(3 p^{2}+2 p\right) \), distribute the subtraction and combine like terms: \[ 7p^2 + 6p - 3p^2 - 2p = (7-3)p^2 + (6-2)p = 4p^2 + 4p. \] 18) For the product \( (3 p^{3}-5)+\left(2 p^{2}-2 p^{3}+3\right) \), again combine like terms: \[ (3p^3 - 2p^3) + 2p^2 + (-5 + 3) = (3 - 2)p^3 + 2p^2 - 2 = p^3 + 2p^2 - 2. \] 19) For the product \( (3 v-4)(4 v^{2}-2 v+1) \), apply the distributive property: \[ 3v(4v^2) + 3v(-2v) + 3v(1) - 4(4v^2) - 4(-2v) - 4(1) = 12v^3 - 6v^2 + 3v - 16v^2 + 8v - 4. \] Combine like terms to get: \[ 12v^3 + (-6 - 16)v^2 + (3 + 8)v - 4 = 12v^3 - 22v^2 + 11v - 4. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy