\( \frac{\operatorname{li}^{\text {2xv2 }}-3^{x-1} \cdot 3^{x+1}}{9 \cdot 3^{2 x-2}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify the expression \( \frac{\operatorname{li}^{\text {2xv2 }}-3^{x-1} \cdot 3^{x+1}}{9 \cdot 3^{2 x-2}} \), let's break it down step by step: First, we can simplify the term in the numerator: \[ 3^{x-1} \cdot 3^{x+1} = 3^{(x-1) + (x+1)} = 3^{2x} \] So the numerator becomes \( \operatorname{li}^{\text {2xv2 }} - 3^{2x} \). Next, let's look at the denominator: \[ 9 \cdot 3^{2x-2} = 9 \cdot \frac{3^{2x}}{3^2} = 9 \cdot \frac{3^{2x}}{9} = 3^{2x} \] Now we can rewrite the entire expression: \[ \frac{\operatorname{li}^{\text {2xv2 }} - 3^{2x}}{3^{2x}} \] Finally, we can separate the fraction: \[ \frac{\operatorname{li}^{\text {2xv2 }}}{3^{2x}} - \frac{3^{2x}}{3^{2x}} = \frac{\operatorname{li}^{\text {2xv2 }}}{3^{2x}} - 1 \] Thus, the simplified form of the given expression is: \[ \frac{\operatorname{li}^{\text {2xv2 }}}{3^{2x}} - 1 \]