Question
upstudy study bank question image url

In Exercises 21-24, compute the scalar triple product \( \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \) \( 21 . \mathbf{u}=(-2,0,6), \mathbf{v}=(1,-3,1), \mathbf{w}=(-5,-1,1) \)

Ask by Cross Elliott. in Saudi Arabia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The scalar triple product \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \) is \(-92\).

Solution

To compute the scalar triple product \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \), follow these steps: Given vectors: \[ \mathbf{u} = (-2, 0, 6), \quad \mathbf{v} = (1, -3, 1), \quad \mathbf{w} = (-5, -1, 1) \] 1. **Compute the Cross Product \( \mathbf{v} \times \mathbf{w} \):** \[ \mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -3 & 1 \\ -5 & -1 & 1 \end{vmatrix} \] \[ = \mathbf{i} \left( (-3)(1) - (1)(-1) \right) - \mathbf{j} \left( (1)(1) - (1)(-5) \right) + \mathbf{k} \left( (1)(-1) - (-3)(-5) \right) \] \[ = \mathbf{i} (-3 + 1) - \mathbf{j} (1 + 5) + \mathbf{k} (-1 - 15) \] \[ = \mathbf{i} (-2) - \mathbf{j} (6) + \mathbf{k} (-16) \] \[ = (-2, -6, -16) \] 2. **Compute the Dot Product \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \):** \[ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (-2)(-2) + (0)(-6) + (6)(-16) \] \[ = 4 + 0 - 96 \] \[ = -92 \] **Answer:** \(-92\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To compute the scalar triple product \( \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \), we first need to calculate the cross product \( \mathbf{v} \times \mathbf{w} \), and then take the dot product of \( \mathbf{u} \) with that result. Let's calculate \( \mathbf{v} \times \mathbf{w} \): \[ \mathbf{v} = (1, -3, 1), \quad \mathbf{w} = (-5, -1, 1) \] The cross product \( \mathbf{v} \times \mathbf{w} \) is given by the determinant: \[ \mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -3 & 1 \\ -5 & -1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \left((-3)(1) - (1)(-1)\right) - \mathbf{j} \left((1)(1) - (1)(-5)\right) + \mathbf{k} \left((1)(-1) - (-3)(-5)\right) \] This simplifies to: \[ = \mathbf{i} (-3 + 1) - \mathbf{j} (1 + 5) + \mathbf{k} (-1 - 15) \] \[ = \mathbf{i} (-2) - \mathbf{j} (6) + \mathbf{k} (-16) \] \[ = (-2, -6, -16) \] Now we take the dot product \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \): \[ \mathbf{u} = (-2, 0, 6) \] Calculating the dot product: \[ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (-2)(-2) + (0)(-6) + (6)(-16) \] \[ = 4 + 0 - 96 \] \[ = 4 - 96 = -92 \] Thus, the scalar triple product \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \) is \( \boxed{-92} \).

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy