Question
upstudy study bank question image url

\( \lim _ { n \rightarrow \infty } \frac { 4 x ^ { 2 } + x - 1 } { 8 m ^ { 2 } + x } \)

Ask by Chandler Park. in Angola
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

O limite é \( \frac{4x^{2} + x - 1}{8m^{2} + x} \) se \( x \) e \( m \) são constantes. Se \( x \) ou \( m \) dependem de \( n \), é necessário mais informação para determinar o limite.

Solution

Para resolver o limite: \[ \lim_{n \rightarrow \infty} \frac{4x^{2} + x - 1}{8m^{2} + x} \] é importante analisar como as variáveis \( x \) e \( m \) dependem de \( n \). Há duas situações possíveis: 1. **\( x \) e \( m \) são constantes independentes de \( n \):** Se \( x \) e \( m \) não dependem de \( n \), então a expressão \( \frac{4x^{2} + x - 1}{8m^{2} + x} \) é uma constante em relação a \( n \). Portanto, o limite será simplesmente essa constante: \[ \lim_{n \rightarrow \infty} \frac{4x^{2} + x - 1}{8m^{2} + x} = \frac{4x^{2} + x - 1}{8m^{2} + x} \] 2. **\( x \) e/ou \( m \) dependem de \( n \):** Se \( x \) ou \( m \) são funções de \( n \), precisamos de informações adicionais sobre como \( x(n) \) e \( m(n) \) se comportam conforme \( n \) tende ao infinito para determinar o limite. Sem essa informação, não é possível calcular o limite de forma definitiva. **Conclusão:** - Se \( x \) e \( m \) são constantes, o limite é \( \frac{4x^{2} + x - 1}{8m^{2} + x} \). - Se \( x \) ou \( m \) dependem de \( n \), são necessárias informações adicionais sobre essas dependências para calcular o limite.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate the limit as \( n \) approaches infinity for the expression \( \frac{4x^2 + x - 1}{8m^2 + x} \), we first observe that the variables \( n \) and \( m \) aren’t directly linked in the expression provided. Assuming \( x \) is the variable approaching a limit, we can simplify this. If \( x \) remains finite, the degrees of the polynomial in the numerator and denominator affect the limit. The highest degree term in the numerator is \( 4x^2 \), and in the denominator, we have \( 8m^2 \). As \( n \) approaches infinity, if we let \( m \) also approach infinity, then the limit can be evaluated by analyzing the leading terms. If we keep \( m^2 \) as significantly larger than \( x \) as \( n \) increases, the limit simplifies to: \[ \lim _{n \rightarrow \infty} \frac{4x^2 + x - 1}{8m^2} = 0. \] This is because the numerator is a polynomial of finite degree while the denominator increases without bound. However, if we assume \( m \) is a fixed constant or not tending to infinity, then the limit does not exist as \( n \) becomes asymptotic, suggesting unraveling additional context is necessary for a clearer interpretation.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy