Answer
Jenna's monthly payment is $1,484.47.
Solution
To determine the monthly payment that Jenna pays, we can use the formula for calculating monthly payments on a loan:
\[ \text{Monthly Payment} = \frac{\text{Loan Amount} \times \text{APR} \times (1 + \text{APR})^{n}}{(1 + \text{APR})^{n} - 1} \]
where:
- Loan Amount is the amount borrowed (in this case, the remaining balance after the down payment),
- APR is the annual percentage rate (in decimal form),
- n is the number of payments (in this case, 48 months).
First, let's calculate the remaining balance after the down payment:
\[ \text{Remaining Balance} = \text{Loan Amount} - \text{Down Payment} \]
Given:
- Loan Amount = $29,000
- Down Payment = 10% of $29,000 = 0.10 * $29,000 = $2,900
\[ \text{Remaining Balance} = $29,000 - $2,900 = $26,100 \]
Now, we can calculate the monthly payment using the formula above.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(29000\times 0.045\left(1+0.045\right)^{48}\right)}{\left(\left(1+0.045\right)^{48}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{29000\times 0.045\left(1+0.045\right)^{48}}{\left(1+0.045\right)^{48}-1}\)
- step2: Add the numbers:
\(\frac{29000\times 0.045\times 1.045^{48}}{\left(1+0.045\right)^{48}-1}\)
- step3: Add the numbers:
\(\frac{29000\times 0.045\times 1.045^{48}}{1.045^{48}-1}\)
- step4: Convert the expressions:
\(\frac{29000\times 0.045\left(\frac{209}{200}\right)^{48}}{1.045^{48}-1}\)
- step5: Convert the expressions:
\(\frac{29000\times 0.045\left(\frac{209}{200}\right)^{48}}{\left(\frac{209}{200}\right)^{48}-1}\)
- step6: Multiply:
\(\frac{1305\times \frac{209^{48}}{200^{48}}}{\left(\frac{209}{200}\right)^{48}-1}\)
- step7: Subtract the numbers:
\(\frac{1305\times \frac{209^{48}}{200^{48}}}{\frac{209^{48}-200^{48}}{200^{48}}}\)
- step8: Evaluate the power:
\(\frac{\frac{261\times 209^{48}}{5^{95}\times 8^{48}}}{\frac{209^{48}-200^{48}}{200^{48}}}\)
- step9: Multiply by the reciprocal:
\(\frac{261\times 209^{48}}{5^{95}\times 8^{48}}\times \frac{200^{48}}{209^{48}-200^{48}}\)
- step10: Rewrite the expression:
\(\frac{261\times 209^{48}}{5^{95}\times 8^{48}}\times \frac{25^{48}\times 8^{48}}{209^{48}-200^{48}}\)
- step11: Rewrite the expression:
\(\frac{261\times 209^{48}}{5^{95}\times 8^{48}}\times \frac{5^{96}\times 8^{48}}{209^{48}-200^{48}}\)
- step12: Reduce the numbers:
\(261\times 209^{48}\times \frac{5}{209^{48}-200^{48}}\)
- step13: Multiply:
\(\frac{261\times 209^{48}\times 5}{209^{48}-200^{48}}\)
- step14: Multiply:
\(\frac{1305\times 209^{48}}{209^{48}-200^{48}}\)
The monthly payment that Jenna pays is approximately $1,484.47.
Therefore, Jenna's monthly payment is $1,484.47.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution