Pregunta
upstudy study bank question image url

Jenna bought a new car for \( \$ 29,000 \). She paid a \( 10 \% \) down payment and financed the remaining balance for 48 months with an APR of \( 4.5 \% \). Determine the monthly payment that Jenna pays. Round your answer to the nearest cent, if necessary. Formulas Answer

Ask by O'Quinn Chandler. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Jenna's monthly payment is $1,484.47.

Solución

To determine the monthly payment that Jenna pays, we can use the formula for calculating monthly payments on a loan: \[ \text{Monthly Payment} = \frac{\text{Loan Amount} \times \text{APR} \times (1 + \text{APR})^{n}}{(1 + \text{APR})^{n} - 1} \] where: - Loan Amount is the amount borrowed (in this case, the remaining balance after the down payment), - APR is the annual percentage rate (in decimal form), - n is the number of payments (in this case, 48 months). First, let's calculate the remaining balance after the down payment: \[ \text{Remaining Balance} = \text{Loan Amount} - \text{Down Payment} \] Given: - Loan Amount = $29,000 - Down Payment = 10% of $29,000 = 0.10 * $29,000 = $2,900 \[ \text{Remaining Balance} = $29,000 - $2,900 = $26,100 \] Now, we can calculate the monthly payment using the formula above. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(29000\times 0.045\left(1+0.045\right)^{48}\right)}{\left(\left(1+0.045\right)^{48}-1\right)}\) - step1: Remove the parentheses: \(\frac{29000\times 0.045\left(1+0.045\right)^{48}}{\left(1+0.045\right)^{48}-1}\) - step2: Add the numbers: \(\frac{29000\times 0.045\times 1.045^{48}}{\left(1+0.045\right)^{48}-1}\) - step3: Add the numbers: \(\frac{29000\times 0.045\times 1.045^{48}}{1.045^{48}-1}\) - step4: Convert the expressions: \(\frac{29000\times 0.045\left(\frac{209}{200}\right)^{48}}{1.045^{48}-1}\) - step5: Convert the expressions: \(\frac{29000\times 0.045\left(\frac{209}{200}\right)^{48}}{\left(\frac{209}{200}\right)^{48}-1}\) - step6: Multiply: \(\frac{1305\times \frac{209^{48}}{200^{48}}}{\left(\frac{209}{200}\right)^{48}-1}\) - step7: Subtract the numbers: \(\frac{1305\times \frac{209^{48}}{200^{48}}}{\frac{209^{48}-200^{48}}{200^{48}}}\) - step8: Evaluate the power: \(\frac{\frac{261\times 209^{48}}{5^{95}\times 8^{48}}}{\frac{209^{48}-200^{48}}{200^{48}}}\) - step9: Multiply by the reciprocal: \(\frac{261\times 209^{48}}{5^{95}\times 8^{48}}\times \frac{200^{48}}{209^{48}-200^{48}}\) - step10: Rewrite the expression: \(\frac{261\times 209^{48}}{5^{95}\times 8^{48}}\times \frac{25^{48}\times 8^{48}}{209^{48}-200^{48}}\) - step11: Rewrite the expression: \(\frac{261\times 209^{48}}{5^{95}\times 8^{48}}\times \frac{5^{96}\times 8^{48}}{209^{48}-200^{48}}\) - step12: Reduce the numbers: \(261\times 209^{48}\times \frac{5}{209^{48}-200^{48}}\) - step13: Multiply: \(\frac{261\times 209^{48}\times 5}{209^{48}-200^{48}}\) - step14: Multiply: \(\frac{1305\times 209^{48}}{209^{48}-200^{48}}\) The monthly payment that Jenna pays is approximately $1,484.47. Therefore, Jenna's monthly payment is $1,484.47.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

First, let's calculate the down payment Jenna made on her new car. A 10% down payment on a \( \$ 29,000 \) car amounts to \( \$ 2,900 \). This means she financed the remaining amount of \( \$ 26,100 \) (which is \( 29,000 - 2,900 \)). By using the formula for calculating monthly payments for an auto loan, which is \( M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \), where \( M \) is the monthly payment, \( P \) is the loan principal, \( r \) is the monthly interest rate, and \( n \) is the number of payments, we find that \( r = \frac{4.5\%}{12} = 0.00375 \) and \( n = 48 \). Now, substituting the values into the formula gives \( M = 26100 \times \frac{0.00375(1 + 0.00375)^{48}}{(1 + 0.00375)^{48} - 1} \). This results in a monthly payment of approximately \( \$ 605.48 \). So, Jenna will pay about $605.48 each month for four years to own that shiny new car!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad