If \( \sin \alpha=0.504 \) and \( \cos \beta=0.679 \) with both angles' terminal rays in Quadrant-1, find the values of \( \tan (\alpha+\beta)=\square \) Your answers should be accurate to 4 decimal places. Submit Question
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find \( \tan(\alpha + \beta) \), we can use the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] First, we need to find \( \tan \alpha \) and \( \tan \beta \). From the given information: - \( \sin \alpha = 0.504 \): Using the Pythagorean identity, we can determine \( \cos \alpha \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - (0.504)^2 \approx 1 - 0.254016 = 0.745984 \implies \cos \alpha \approx \sqrt{0.745984} \approx 0.8642 \] Thus, \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{0.504}{0.8642} \approx 0.5825 \] - \( \cos \beta = 0.679 \): Similarly, we find \( \sin \beta \) using the Pythagorean identity: \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - (0.679)^2 \approx 1 - 0.460084 = 0.539916 \implies \sin \beta \approx \sqrt{0.539916} \approx 0.7342 \] Thus, \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{0.7342}{0.679} \approx 1.0806 \] Now substituting these values into the tangent addition formula: \[ \tan(\alpha + \beta) \approx \frac{0.5825 + 1.0806}{1 - (0.5825)(1.0806)} \] Calculating: \[ \tan(\alpha + \beta) \approx \frac{1.6631}{1 - 0.6290} = \frac{1.6631}{0.3710} \approx 4.48 \] Thus, the value of \( \tan(\alpha + \beta) \) accurate to four decimal places is: \[ \tan(\alpha + \beta) \approx 4.48 \]