if \( g(1)=4 f(2)=2, f^{\prime}(2)=g^{\prime}(1)=-1 \) \( h(x)=\frac{1}{f(x)}+g\left(\frac{2}{x}\right)+x \Rightarrow h^{\prime}(2)= \) ?
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find \( h'(2) \), we start by computing the derivative of \( h(x) \). We have: \[ h(x) = \frac{1}{f(x)} + g\left(\frac{2}{x}\right) + x \] Applying the product, chain, and sum rules, the derivative \( h'(x) \) can be computed as follows: \[ h'(x) = -\frac{f'(x)}{(f(x))^2} + g'\left(\frac{2}{x}\right) \cdot \left(-\frac{2}{x^2}\right) + 1 \] Now, substituting \( x = 2 \): \[ h'(2) = -\frac{f'(2)}{(f(2))^2} + g'\left(1\right) \cdot \left(-\frac{2}{2^2}\right) + 1 \] We know: \( f(2) = 2 \), hence \( (f(2))^2 = 4 \) Additionally, we know \( f'(2) = -1 \) and \( g'(1) = -1 \): \[ h'(2) = -\frac{-1}{4} + (-1) \cdot \left(-\frac{2}{4}\right) + 1 \] Simplifying, we find: \[ h'(2) = \frac{1}{4} + \frac{2}{4} + 1 = \frac{1}{4} + \frac{1}{2} + 1 = \frac{1}{4} + \frac{2}{4} + \frac{4}{4} \] This gives us: \[ h'(2) = \frac{7}{4} \] Thus, the final result is: \[ h'(2) = \frac{7}{4} \]