Question
upstudy study bank question image url

7. Resuelve la ecuación utilizando el método de completando trimomio cuadrado perfo (Valor: 1pto.) \[ 2 x^{2}+5 x+2=0 \]

Ask by Lambert Hodges. in Mexico
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones son \(x=-2\) y \(x=-\frac{1}{2}\).

Solution

Solve the equation \( 2x^2+5x+2=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(2x^{2}+5x+2=0\) - step1: Factor the expression: \(\left(x+2\right)\left(2x+1\right)=0\) - step2: Separate into possible cases: \(\begin{align}&2x+1=0\\&x+2=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=-\frac{1}{2}\\&x=-2\end{align}\) - step4: Rewrite: \(x_{1}=-2,x_{2}=-\frac{1}{2}\) La solución de la ecuación \(2x^2+5x+2=0\) utilizando el método de completar el cuadrado es \(x=-2\) o \(x=-\frac{1}{2}\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para resolver la ecuación \(2x^2 + 5x + 2 = 0\) mediante el método de completar el trinomio cuadrado perfecto, primero dividimos toda la ecuación por 2 para simplificarla: \[ x^2 + \frac{5}{2}x + 1 = 0. \] Ahora, llevamos el término constante al otro lado: \[ x^2 + \frac{5}{2}x = -1. \] Luego, tomamos la mitad del coeficiente de \(x\) (que es \(\frac{5}{2}\)), lo elevamos al cuadrado y sumamos ese valor en ambos lados de la ecuación: \[\left(\frac{5}{4}\right)^2 = \frac{25}{16}. \] Esto nos da: \[ x^2 + \frac{5}{2}x + \frac{25}{16} = -1 + \frac{25}{16}. \] Simplificando el lado derecho: \[ x^2 + \frac{5}{2}x + \frac{25}{16} = \frac{-16 + 25}{16} = \frac{9}{16}. \] Ahora podemos factorizar el lado izquierdo como un cuadrado: \[ \left(x + \frac{5}{4}\right)^2 = \frac{9}{16}. \] Finalmente, sacamos la raíz cuadrada de ambos lados: \[ x + \frac{5}{4} = \pm \frac{3}{4}. \] Resolviendo para \(x\): 1. \(x + \frac{5}{4} = \frac{3}{4} \Rightarrow x = \frac{3}{4} - \frac{5}{4} = -\frac{2}{4} = -\frac{1}{2}. \) 2. \(x + \frac{5}{4} = -\frac{3}{4} \Rightarrow x = -\frac{3}{4} - \frac{5}{4} = -\frac{8}{4} = -2. \) Por lo tanto, las soluciones son \(x = -\frac{1}{2}\) y \(x = -2\).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy