Question
upstudy study bank question image url

2. \( \lim _{x \rightarrow-2} \frac{8+x^{3}}{4-x^{2}}, \mathrm{R}: 3 \)

Ask by Ortiz Davison. in Angola
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

O limite é 3.

Solution

Claro, vamos calcular o limite: \[ \lim _{x \rightarrow -2} \frac{8 + x^{3}}{4 - x^{2}} \] Primeiro, substituímos \( x = -2 \) na expressão: \[ \frac{8 + (-2)^{3}}{4 - (-2)^{2}} = \frac{8 - 8}{4 - 4} = \frac{0}{0} \] Como obtemos uma forma indeterminada \( \frac{0}{0} \), precisamos simplificar a expressão. Vamos fatorar o numerador e o denominador. **Fatorando o numerador:** \[ 8 + x^{3} = x^{3} + 8 = (x + 2)(x^{2} - 2x + 4) \] **Fatorando o denominador:** \[ 4 - x^{2} = (2 - x)(2 + x) = -(x - 2)(x + 2) \] Agora, a expressão original fica: \[ \frac{(x + 2)(x^{2} - 2x + 4)}{-(x - 2)(x + 2)} = \frac{x^{2} - 2x + 4}{-(x - 2)} = -\frac{x^{2} - 2x + 4}{x - 2} \] Agora, podemos calcular o limite substituindo \( x = -2 \): \[ -\frac{(-2)^2 - 2(-2) + 4}{-2 - 2} = -\frac{4 + 4 + 4}{-4} = -\frac{12}{-4} = 3 \] Portanto, o limite é **3**.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the limit, first substitute \( x = -2 \) directly into the expression: \[ \lim _{x \rightarrow -2} \frac{8 + x^3}{4 - x^2} = \frac{8 + (-2)^3}{4 - (-2)^2} = \frac{8 - 8}{4 - 4} = \frac{0}{0} \] This is an indeterminate form, so we need to factor the expression. The numerator \( 8 + x^3 \) can be factored as \( (x + 2)(x^2 - 2x + 4) \) using the sum of cubes formula. The denominator \( 4 - x^2 \) can be factored as \( (2 - x)(2 + x) \). Now, rewriting the limit gives us: \[ \lim _{x \rightarrow -2} \frac{(x + 2)(x^2 - 2x + 4)}{(2 - x)(2 + x)} \] Cancel out \( (x + 2) \): \[ \lim _{x \rightarrow -2} \frac{x^2 - 2x + 4}{-(x - 2)} \] Now substitute \( x = -2 \) again: \[ = \frac{(-2)^2 - 2(-2) + 4}{-(-2 - 2)} = \frac{4 + 4 + 4}{4} = \frac{12}{4} = 3 \] So the limit is 3, confirming your result. To recap: the key here was recognizing this as an indeterminate limit and employing factoring to solve it effectively. It's essential to keep these strategies at your disposal, especially in calculus!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy