Question
upstudy study bank question image url

Simplify each expression (a) \( \left(\frac{2}{y}\right)^{3}\left(\frac{3}{y}\right)^{2} \) (b) \( \left(\frac{b^{-4}}{a^{-4}}\right)\left(\frac{b}{a}\right)^{4} \) \( \square \)

Ask by Murphy Savage. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

(a) \( \frac{72}{y^{5}} \) (b) \( 1 \)

Solution

Let's simplify each of the given expressions step by step. --- ### Problem (a) \[ \left(\frac{2}{y}\right)^{3}\left(\frac{3}{y}\right)^{2} \] **Step 1:** Apply the power to both the numerator and the denominator for each fraction. \[ \left(\frac{2}{y}\right)^{3} = \frac{2^{3}}{y^{3}} = \frac{8}{y^{3}} \] \[ \left(\frac{3}{y}\right)^{2} = \frac{3^{2}}{y^{2}} = \frac{9}{y^{2}} \] **Step 2:** Multiply the two results together. \[ \frac{8}{y^{3}} \times \frac{9}{y^{2}} = \frac{8 \times 9}{y^{3} \times y^{2}} = \frac{72}{y^{5}} \] **Final Answer:** \[ \left(\frac{2}{y}\right)^{3}\left(\frac{3}{y}\right)^{2} = \frac{72}{y^{5}} \] --- ### Problem (b) \[ \left(\frac{b^{-4}}{a^{-4}}\right)\left(\frac{b}{a}\right)^{4} \] **Step 1:** Simplify the first fraction by using the property \( \frac{x^{-n}}{y^{-n}} = \left(\frac{y}{x}\right)^n \). \[ \frac{b^{-4}}{a^{-4}} = \left(\frac{a}{b}\right)^{4} \] **Step 2:** Rewrite the entire expression with the simplification from Step 1. \[ \left(\frac{a}{b}\right)^{4} \times \left(\frac{b}{a}\right)^{4} \] **Step 3:** Use the property of exponents \( x^{n} \times x^{-n} = x^{0} = 1 \). \[ \left(\frac{a}{b} \times \frac{b}{a}\right)^{4} = \left(1\right)^{4} = 1 \] **Final Answer:** \[ \left(\frac{b^{-4}}{a^{-4}}\right)\left(\frac{b}{a}\right)^{4} = 1 \] --- If you have any further questions or need additional explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the first expression \( \left(\frac{2}{y}\right)^{3}\left(\frac{3}{y}\right)^{2} \), we can calculate each part separately. 1. \( \left(\frac{2}{y}\right)^{3} = \frac{2^3}{y^3} = \frac{8}{y^3} \) 2. \( \left(\frac{3}{y}\right)^{2} = \frac{3^2}{y^2} = \frac{9}{y^2} \) Now, multiplying these two results gives: \[ \frac{8}{y^3} \cdot \frac{9}{y^2} = \frac{8 \cdot 9}{y^{3+2}} = \frac{72}{y^5} \] For the second expression \( \left(\frac{b^{-4}}{a^{-4}}\right)\left(\frac{b}{a}\right)^{4} \): 1. Simplifying the first part: \(\frac{b^{-4}}{a^{-4}} = b^{-4} \cdot a^{4} = \frac{a^4}{b^4}\) 2. The second part calculates to: \(\left(\frac{b}{a}\right)^{4} = \frac{b^4}{a^4}\) Now, multiplying these two results gives: \[ \frac{a^4}{b^4} \cdot \frac{b^4}{a^4} = \frac{a^4 b^4}{b^4 a^4} = 1 \] So the complete simplified expressions are: (a) \( \frac{72}{y^5} \) (b) \( 1 \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy