Question
upstudy study bank question image url

Express \( \frac{(6+i)(2-i)}{(4+3 i)(1-2 i)} \) in the form \( a+i b \)

Ask by Estrada Moreno. in Nigeria
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 2 + \frac{1}{3}i \)

Solution

To express \(\frac{(6+i)(2-i)}{(4+3i)(1-2i)}\) in the form \(a + ib\), let's simplify the expression step by step. **Step 1: Simplify the Numerator** \[ (6 + i)(2 - i) = 6 \cdot 2 + 6 \cdot (-i) + i \cdot 2 + i \cdot (-i) = 12 - 6i + 2i - i^2 \] Since \(i^2 = -1\): \[ 12 - 6i + 2i - (-1) = 12 - 4i + 1 = 13 - 4i \] **Step 2: Simplify the Denominator** \[ (4 + 3i)(1 - 2i) = 4 \cdot 1 + 4 \cdot (-2i) + 3i \cdot 1 + 3i \cdot (-2i) = 4 - 8i + 3i - 6i^2 \] Again, using \(i^2 = -1\): \[ 4 - 8i + 3i - 6(-1) = 4 - 5i + 6 = 10 - 5i \] **Step 3: Divide the Simplified Numerator by the Simplified Denominator** \[ \frac{13 - 4i}{10 - 5i} \] To simplify this, multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(13 - 4i)(10 + 5i)}{(10 - 5i)(10 + 5i)} = \frac{130 + 65i - 40i - 20i^2}{100 - 25i^2} \] Simplify using \(i^2 = -1\): \[ \frac{130 + 25i + 20}{100 + 25} = \frac{150 + 25i}{125} = \frac{150}{75} + \frac{25i}{75} = 2 + \frac{1}{3}i \] **Final Answer:** \[ 2 + \dfrac{1}{3}i \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To express \( \frac{(6+i)(2-i)}{(4+3i)(1-2i)} \) in the form \( a + ib \), let's start by calculating the numerator and denominator separately. **Step 1: Calculate the numerator:** \[ (6+i)(2-i) = 6 \cdot 2 - 6 \cdot i + 2 \cdot i - i^2 \] Since \( i^2 = -1 \), we can simplify this: \[ = 12 - 6i + 2i + 1 = 12 + 1 - 4i = 13 - 4i \] **Step 2: Calculate the denominator:** \[ (4+3i)(1-2i) = 4 \cdot 1 - 4 \cdot 2i + 3i \cdot 1 - 3i \cdot 2i \] Expanding this gives: \[ = 4 - 8i + 3i + 6 = 10 - 5i \] **Step 3: Now, we substitute back into the expression:** \[ \frac{(6+i)(2-i)}{(4+3i)(1-2i)} = \frac{13 - 4i}{10 - 5i} \] **Step 4: To simplify this fraction, we multiply the numerator and denominator by the conjugate of the denominator:** \[ = \frac{(13 - 4i)(10 + 5i)}{(10 - 5i)(10 + 5i)} \] **Calculating the denominator:** \[ (10 - 5i)(10 + 5i) = 10^2 - (5i)^2 = 100 - 25(-1) = 100 + 25 = 125 \] **Calculating the numerator:** \[ (13 - 4i)(10 + 5i) = 13 \cdot 10 + 13 \cdot 5i - 4i \cdot 10 - 4i \cdot 5i \] \[ = 130 + 65i - 40i - 20(-1) = 130 + 65i - 40i + 20 = 130 + 20 + (65i - 40i) = 150 + 25i \] **Step 5: Putting it all together:** \[ \frac{150 + 25i}{125} = \frac{150}{125} + \frac{25i}{125} = 1.2 + 0.2i \] Thus, the final result in the form \( a + ib \) is: \[ \boxed{1.2 + 0.2i} \]

Related Questions

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy