Without the use of tables or a calculator prove that \( \frac{1-\cos 2 A}{\sin 2 A}=\tan A \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To prove the equation \( \frac{1-\cos 2 A}{\sin 2 A} = \tan A \), we start by using the double angle identities for sine and cosine: 1. The double angle identity for cosine is: \[ \cos 2A = 1 - 2\sin^2 A \] 2. The double angle identity for sine is: \[ \sin 2A = 2\sin A \cos A \] Now, substitute the identity for \(\cos 2A\) into the equation: \[ 1 - \cos 2A = 1 - (1 - 2\sin^2 A) = 2\sin^2 A \] Now, substituting this into the left side of the original equation: \[ \frac{1 - \cos 2A}{\sin 2A} = \frac{2\sin^2 A}{\sin 2A} \] Next, replace \(\sin 2A\) using its identity: \[ = \frac{2\sin^2 A}{2\sin A \cos A} = \frac{\sin^2 A}{\sin A \cos A} = \frac{\sin A}{\cos A} \] Thus, we find: \[ \frac{\sin A}{\cos A} = \tan A \] This completes our proof, showing that \[ \frac{1 - \cos 2A}{\sin 2A} = \tan A \]