Determine \( f_{x} \) und fy of the given function \( f(x, y)=\left(x^{5} \ln 2 x\right) y^{8} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the partial derivatives \( f_{x} \) and \( f_{y} \) of the function \( f(x, y) = (x^{5} \ln(2x)) y^{8} \), we start with \( f_{x} \). For the partial derivative with respect to \( x \), we treat \( y \) as a constant and differentiate: \[ f_{x} = \frac{\partial}{\partial x} \left( (x^{5} \ln(2x)) y^{8} \right) = y^{8} \cdot \frac{\partial}{\partial x} (x^{5} \ln(2x)) \] Using the product rule, let \( u = x^5 \) and \( v = \ln(2x) \): \[ f_{x} = y^8 \left(5x^4 \ln(2x) + x^5 \cdot \frac{1}{x} \right) = y^8 \left(5x^4 \ln(2x) + x^4 \right) \] Now for the partial derivative with respect to \( y \): \[ f_{y} = \frac{\partial}{\partial y} \left( (x^{5} \ln(2x)) y^{8} \right) = (x^{5} \ln(2x)) \cdot \frac{\partial}{\partial y} (y^{8}) = 8(x^{5} \ln(2x)) y^{7} \] Thus, the partial derivatives are: \[ f_{x} = y^{8} (5x^4 \ln(2x) + x^4) \] \[ f_{y} = 8(x^{5} \ln(2x)) y^{7} \]