36 Si sen \( \alpha=0,15 \) y \( \cos \beta=0,45 \) halla las razones trigonométricas del ángulo \( 2 \alpha+\beta \).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Para hallar las razones trigonométricas del ángulo \( 2\alpha + \beta \), podemos utilizar las identidades trigonométricas. Primero, calculemos \( \sin 2\alpha \) y \( \cos 2\alpha \) utilizando la doble identidad: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Dado que \( \sin \alpha = 0.15 \), necesitamos calcular \( \cos \alpha \) usando \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - (0.15)^2} = \sqrt{1 - 0.0225} = \sqrt{0.9775} \approx 0.9887 \] Ahora, calculemos \( \sin 2\alpha \): \[ \sin 2\alpha = 2(0.15)(0.9887) \approx 0.2966 \] Y \( \cos 2\alpha \): \[ \cos 2\alpha = 2\cos^2 \alpha - 1 = 2(0.9887)^2 - 1 \approx 2(0.9775) - 1 \approx 0.955 \] Con \( \cos \beta = 0.45 \), podemos hallar \( \sin \beta \): \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - (0.45)^2} = \sqrt{1 - 0.2025} = \sqrt{0.7975} \approx 0.8933 \] Ahora, aplicamos la fórmula para \( \sin(2\alpha + \beta) \) y \( \cos(2\alpha + \beta) \): \[ \sin(2\alpha + \beta) = \sin 2\alpha \cos \beta + \cos 2\alpha \sin \beta \] \[ \sin(2\alpha + \beta) \approx 0.2966 \cdot 0.45 + 0.955 \cdot 0.8933 \approx 0.13347 + 0.85229 \approx 0.98576 \] \[ \cos(2\alpha + \beta) = \cos 2\alpha \cos \beta - \sin 2\alpha \sin \beta \] \[ \cos(2\alpha + \beta) \approx 0.955 \cdot 0.45 - 0.2966 \cdot 0.8933 \approx 0.42975 - 0.26467 \approx 0.16508 \] Finalmente tenemos las razones trigonométricas del ángulo \( 2\alpha + \beta \): - \( \sin(2\alpha + \beta) \approx 0.98576 \) - \( \cos(2\alpha + \beta) \approx 0.16508 \)