Answer
Here are the expanded forms of the given expressions:
1. \( (x+3)(x^{2}+x+2) = x^{3}+4x^{2}+5x+6 \)
2. \( (a+b)(a^{2}-ab+b^{2}) = a^{3}+b^{3} \)
3. \( (x+2)(3x^{2}-7x-1) = 3x^{3}-x^{2}-15x-2 \)
4. \( (3x+5)(2x^{2}-x-2) = 6x^{3}+7x^{2}-11x-10 \)
5. \( \left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right) = \frac{x^{6}+1}{x^{3}} \)
6. \( (a-b)(a+b)^{2} = a^{3}+a^{2}b-ab^{2}-b^{3} \)
Solution
Simplify the expression by following steps:
- step0: Simplify the product:
\(\left(a+b\right)\left(a^{2}-ab+b^{2}\right)\)
- step1: Simplify the product:
\(a^{3}+b^{3}\)
Expand the expression \( (x+3)(x^{2}+x+2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x+3\right)\left(x^{2}+x+2\right)\)
- step1: Apply the distributive property:
\(x\times x^{2}+x\times x+x\times 2+3x^{2}+3x+3\times 2\)
- step2: Multiply the terms:
\(x^{3}+x^{2}+2x+3x^{2}+3x+6\)
- step3: Add the terms:
\(x^{3}+4x^{2}+5x+6\)
Expand the expression \( (x+2)(3x^{2}-7x-1) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x+2\right)\left(3x^{2}-7x-1\right)\)
- step1: Apply the distributive property:
\(x\times 3x^{2}-x\times 7x-x\times 1+2\times 3x^{2}-2\times 7x-2\times 1\)
- step2: Multiply the terms:
\(3x^{3}-7x^{2}-x+6x^{2}-14x-2\)
- step3: Add the terms:
\(3x^{3}-x^{2}-15x-2\)
Expand the expression \( (3x+5)(2x^{2}-x-2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(3x+5\right)\left(2x^{2}-x-2\right)\)
- step1: Apply the distributive property:
\(3x\times 2x^{2}-3x\times x-3x\times 2+5\times 2x^{2}-5x-5\times 2\)
- step2: Multiply the terms:
\(6x^{3}-3x^{2}-6x+10x^{2}-5x-10\)
- step3: Add the terms:
\(6x^{3}+7x^{2}-11x-10\)
Expand the expression \( (a-b)(a+b)^{2} \)
Simplify the expression by following steps:
- step0: Expand the expression:
\(\left(a-b\right)\left(a+b\right)^{2}\)
- step1: Calculate:
\(\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)\)
- step2: Apply the distributive property:
\(a\times a^{2}+a\times 2ab+ab^{2}-ba^{2}-b\times 2ab-b\times b^{2}\)
- step3: Multiply the terms:
\(a^{3}+2a^{2}b+ab^{2}-ba^{2}-2b^{2}a-b^{3}\)
- step4: Subtract the terms:
\(a^{3}+a^{2}b-ab^{2}-b^{3}\)
Expand the expression \( (x+\frac{1}{x})(x^{2}-1+\frac{1}{x^{2}}) \)
Simplify the expression by following steps:
- step0: Simplify the product:
\(\left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right)\)
- step1: Add the terms:
\(\frac{x^{2}+1}{x}\times \left(x^{2}-1+\frac{1}{x^{2}}\right)\)
- step2: Calculate:
\(\frac{x^{2}+1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\)
- step3: Multiply the terms:
\(\frac{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{x\times x^{2}}\)
- step4: Multiply the terms:
\(\frac{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{x^{3}}\)
- step5: Simplify the product:
\(\frac{x^{6}+1}{x^{3}}\)
Here are the expanded forms for each of the expressions provided:
1. **Expression:** \( (x+3)(x^{2}+x+2) \)
**Expanded Form:** \( x^{3}+4x^{2}+5x+6 \)
2. **Expression:** \( (a+b)(a^{2}-ab+b^{2}) \)
**Expanded Form:** \( a^{3}+b^{3} \)
3. **Expression:** \( (x+2)(3x^{2}-7x-1) \)
**Expanded Form:** \( 3x^{3}-x^{2}-15x-2 \)
4. **Expression:** \( (3x+5)(2x^{2}-x-2) \)
**Expanded Form:** \( 6x^{3}+7x^{2}-11x-10 \)
5. **Expression:** \( (x+\frac{1}{x})(x^{2}-1+\frac{1}{x^{2}}) \)
**Expanded Form:** \( \frac{x^{6}+1}{x^{3}} \)
6. **Expression:** \( (a-b)(a+b)^{2} \)
**Expanded Form:** \( a^{3}+a^{2}b-ab^{2}-b^{3} \)
If you have any further questions or need additional assistance, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution