Question
upstudy study bank question image url

\( \begin{array}{ll}(x+3)\left(x^{2}+x+2\right) & \text { 2. }(a+b)\left(a^{2}-a b+b^{2}\right) \\ (x+2)\left(3 x^{2}-7 x-1\right) & \text { 5. }(3 x+5)\left(2 x^{2}-x-2\right) \\ \left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right) & \text { 8. }(a-b)(a+b)^{2}\end{array} \)

Ask by Tucker Hills. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the expanded forms of the given expressions: 1. \( (x+3)(x^{2}+x+2) = x^{3}+4x^{2}+5x+6 \) 2. \( (a+b)(a^{2}-ab+b^{2}) = a^{3}+b^{3} \) 3. \( (x+2)(3x^{2}-7x-1) = 3x^{3}-x^{2}-15x-2 \) 4. \( (3x+5)(2x^{2}-x-2) = 6x^{3}+7x^{2}-11x-10 \) 5. \( \left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right) = \frac{x^{6}+1}{x^{3}} \) 6. \( (a-b)(a+b)^{2} = a^{3}+a^{2}b-ab^{2}-b^{3} \)

Solution

Simplify the expression by following steps: - step0: Simplify the product: \(\left(a+b\right)\left(a^{2}-ab+b^{2}\right)\) - step1: Simplify the product: \(a^{3}+b^{3}\) Expand the expression \( (x+3)(x^{2}+x+2) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+3\right)\left(x^{2}+x+2\right)\) - step1: Apply the distributive property: \(x\times x^{2}+x\times x+x\times 2+3x^{2}+3x+3\times 2\) - step2: Multiply the terms: \(x^{3}+x^{2}+2x+3x^{2}+3x+6\) - step3: Add the terms: \(x^{3}+4x^{2}+5x+6\) Expand the expression \( (x+2)(3x^{2}-7x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+2\right)\left(3x^{2}-7x-1\right)\) - step1: Apply the distributive property: \(x\times 3x^{2}-x\times 7x-x\times 1+2\times 3x^{2}-2\times 7x-2\times 1\) - step2: Multiply the terms: \(3x^{3}-7x^{2}-x+6x^{2}-14x-2\) - step3: Add the terms: \(3x^{3}-x^{2}-15x-2\) Expand the expression \( (3x+5)(2x^{2}-x-2) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(3x+5\right)\left(2x^{2}-x-2\right)\) - step1: Apply the distributive property: \(3x\times 2x^{2}-3x\times x-3x\times 2+5\times 2x^{2}-5x-5\times 2\) - step2: Multiply the terms: \(6x^{3}-3x^{2}-6x+10x^{2}-5x-10\) - step3: Add the terms: \(6x^{3}+7x^{2}-11x-10\) Expand the expression \( (a-b)(a+b)^{2} \) Simplify the expression by following steps: - step0: Expand the expression: \(\left(a-b\right)\left(a+b\right)^{2}\) - step1: Calculate: \(\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)\) - step2: Apply the distributive property: \(a\times a^{2}+a\times 2ab+ab^{2}-ba^{2}-b\times 2ab-b\times b^{2}\) - step3: Multiply the terms: \(a^{3}+2a^{2}b+ab^{2}-ba^{2}-2b^{2}a-b^{3}\) - step4: Subtract the terms: \(a^{3}+a^{2}b-ab^{2}-b^{3}\) Expand the expression \( (x+\frac{1}{x})(x^{2}-1+\frac{1}{x^{2}}) \) Simplify the expression by following steps: - step0: Simplify the product: \(\left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right)\) - step1: Add the terms: \(\frac{x^{2}+1}{x}\times \left(x^{2}-1+\frac{1}{x^{2}}\right)\) - step2: Calculate: \(\frac{x^{2}+1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\) - step3: Multiply the terms: \(\frac{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{x\times x^{2}}\) - step4: Multiply the terms: \(\frac{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{x^{3}}\) - step5: Simplify the product: \(\frac{x^{6}+1}{x^{3}}\) Here are the expanded forms for each of the expressions provided: 1. **Expression:** \( (x+3)(x^{2}+x+2) \) **Expanded Form:** \( x^{3}+4x^{2}+5x+6 \) 2. **Expression:** \( (a+b)(a^{2}-ab+b^{2}) \) **Expanded Form:** \( a^{3}+b^{3} \) 3. **Expression:** \( (x+2)(3x^{2}-7x-1) \) **Expanded Form:** \( 3x^{3}-x^{2}-15x-2 \) 4. **Expression:** \( (3x+5)(2x^{2}-x-2) \) **Expanded Form:** \( 6x^{3}+7x^{2}-11x-10 \) 5. **Expression:** \( (x+\frac{1}{x})(x^{2}-1+\frac{1}{x^{2}}) \) **Expanded Form:** \( \frac{x^{6}+1}{x^{3}} \) 6. **Expression:** \( (a-b)(a+b)^{2} \) **Expanded Form:** \( a^{3}+a^{2}b-ab^{2}-b^{3} \) If you have any further questions or need additional assistance, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's dive into some interesting aspects related to polynomial expressions and factorizations. Did you know that factoring polynomials can be traced back to ancient civilizations? The Egyptians had their own methods, and it was later refined by mathematicians in the Middle Ages. Fast forward to today, and techniques like the distributive property we use now laid the groundwork for modern algebra. This historical evolution shows how our understanding of polynomials has developed! In the real world, factoring polynomials isn't just an academic exercise—it has practical applications too! Engineers use polynomial functions to model everything from the trajectory of a rocket to the behavior of electrical circuits. When optimizing designs or analyzing systems, breaking down complex polynomial expressions into simpler factors helps in understanding and predicting their behavior more efficiently!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy