Pregunta
upstudy study bank question image url

\( \begin{array}{ll}(x+3)\left(x^{2}+x+2\right) & \text { 2. }(a+b)\left(a^{2}-a b+b^{2}\right) \\ (x+2)\left(3 x^{2}-7 x-1\right) & \text { 5. }(3 x+5)\left(2 x^{2}-x-2\right) \\ \left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right) & \text { 8. }(a-b)(a+b)^{2}\end{array} \)

Ask by Tucker Hills. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the expanded forms of the given expressions: 1. \( (x+3)(x^{2}+x+2) = x^{3}+4x^{2}+5x+6 \) 2. \( (a+b)(a^{2}-ab+b^{2}) = a^{3}+b^{3} \) 3. \( (x+2)(3x^{2}-7x-1) = 3x^{3}-x^{2}-15x-2 \) 4. \( (3x+5)(2x^{2}-x-2) = 6x^{3}+7x^{2}-11x-10 \) 5. \( \left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right) = \frac{x^{6}+1}{x^{3}} \) 6. \( (a-b)(a+b)^{2} = a^{3}+a^{2}b-ab^{2}-b^{3} \)

Solución

Simplify the expression by following steps: - step0: Simplify the product: \(\left(a+b\right)\left(a^{2}-ab+b^{2}\right)\) - step1: Simplify the product: \(a^{3}+b^{3}\) Expand the expression \( (x+3)(x^{2}+x+2) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+3\right)\left(x^{2}+x+2\right)\) - step1: Apply the distributive property: \(x\times x^{2}+x\times x+x\times 2+3x^{2}+3x+3\times 2\) - step2: Multiply the terms: \(x^{3}+x^{2}+2x+3x^{2}+3x+6\) - step3: Add the terms: \(x^{3}+4x^{2}+5x+6\) Expand the expression \( (x+2)(3x^{2}-7x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+2\right)\left(3x^{2}-7x-1\right)\) - step1: Apply the distributive property: \(x\times 3x^{2}-x\times 7x-x\times 1+2\times 3x^{2}-2\times 7x-2\times 1\) - step2: Multiply the terms: \(3x^{3}-7x^{2}-x+6x^{2}-14x-2\) - step3: Add the terms: \(3x^{3}-x^{2}-15x-2\) Expand the expression \( (3x+5)(2x^{2}-x-2) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(3x+5\right)\left(2x^{2}-x-2\right)\) - step1: Apply the distributive property: \(3x\times 2x^{2}-3x\times x-3x\times 2+5\times 2x^{2}-5x-5\times 2\) - step2: Multiply the terms: \(6x^{3}-3x^{2}-6x+10x^{2}-5x-10\) - step3: Add the terms: \(6x^{3}+7x^{2}-11x-10\) Expand the expression \( (a-b)(a+b)^{2} \) Simplify the expression by following steps: - step0: Expand the expression: \(\left(a-b\right)\left(a+b\right)^{2}\) - step1: Calculate: \(\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)\) - step2: Apply the distributive property: \(a\times a^{2}+a\times 2ab+ab^{2}-ba^{2}-b\times 2ab-b\times b^{2}\) - step3: Multiply the terms: \(a^{3}+2a^{2}b+ab^{2}-ba^{2}-2b^{2}a-b^{3}\) - step4: Subtract the terms: \(a^{3}+a^{2}b-ab^{2}-b^{3}\) Expand the expression \( (x+\frac{1}{x})(x^{2}-1+\frac{1}{x^{2}}) \) Simplify the expression by following steps: - step0: Simplify the product: \(\left(x+\frac{1}{x}\right)\left(x^{2}-1+\frac{1}{x^{2}}\right)\) - step1: Add the terms: \(\frac{x^{2}+1}{x}\times \left(x^{2}-1+\frac{1}{x^{2}}\right)\) - step2: Calculate: \(\frac{x^{2}+1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\) - step3: Multiply the terms: \(\frac{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{x\times x^{2}}\) - step4: Multiply the terms: \(\frac{\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)}{x^{3}}\) - step5: Simplify the product: \(\frac{x^{6}+1}{x^{3}}\) Here are the expanded forms for each of the expressions provided: 1. **Expression:** \( (x+3)(x^{2}+x+2) \) **Expanded Form:** \( x^{3}+4x^{2}+5x+6 \) 2. **Expression:** \( (a+b)(a^{2}-ab+b^{2}) \) **Expanded Form:** \( a^{3}+b^{3} \) 3. **Expression:** \( (x+2)(3x^{2}-7x-1) \) **Expanded Form:** \( 3x^{3}-x^{2}-15x-2 \) 4. **Expression:** \( (3x+5)(2x^{2}-x-2) \) **Expanded Form:** \( 6x^{3}+7x^{2}-11x-10 \) 5. **Expression:** \( (x+\frac{1}{x})(x^{2}-1+\frac{1}{x^{2}}) \) **Expanded Form:** \( \frac{x^{6}+1}{x^{3}} \) 6. **Expression:** \( (a-b)(a+b)^{2} \) **Expanded Form:** \( a^{3}+a^{2}b-ab^{2}-b^{3} \) If you have any further questions or need additional assistance, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's dive into some interesting aspects related to polynomial expressions and factorizations. Did you know that factoring polynomials can be traced back to ancient civilizations? The Egyptians had their own methods, and it was later refined by mathematicians in the Middle Ages. Fast forward to today, and techniques like the distributive property we use now laid the groundwork for modern algebra. This historical evolution shows how our understanding of polynomials has developed! In the real world, factoring polynomials isn't just an academic exercise—it has practical applications too! Engineers use polynomial functions to model everything from the trajectory of a rocket to the behavior of electrical circuits. When optimizing designs or analyzing systems, breaking down complex polynomial expressions into simpler factors helps in understanding and predicting their behavior more efficiently!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad