Question

OEFENING 4 Los op vir \( x \) : \( 1 \quad 3^{x}-3^{x-2}=24 \) \( 2 \quad 3^{x+1}=3^{x}+\frac{2}{3} \) \( 3 \quad 3^{x}+3^{x+2}=10 \) \( 4 \quad 5^{x+1}-\frac{3}{25}=2.5^{x} \) \( 5 \quad 2^{x}+2^{x}+2^{x}=96 \) \( 6 \quad 12^{x}+12^{x}=288 \) \( 7 \quad 2^{x}+2^{x-2}=5 \) \( 8 \quad 2^{2 x}+4^{x+1}=80 \)

Ask by Lynch Chambers. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the solutions for each equation: 1. \( x = 3 \) 2. \( x = -1 \) 3. \( x = 0 \) 4. \( x = -2 \) 5. \( x = 5 \) 6. \( x = 2 \) 7. \( x = 2 \) 8. \( x = 2 \)

Solution

Laten we elk van de oefeningen stap voor stap oplossen: --- **1. \( 3^{x} - 3^{x-2} = 24 \)** **Oplossing:** \[ \begin{align*} 3^{x} - 3^{x-2} &= 24 \\ 3^{x-2} \cdot 3^{2} - 3^{x-2} &= 24 \quad (\text{Omdat } 3^{x} = 3^{x-2} \cdot 3^{2}) \\ 3^{x-2} (9 - 1) &= 24 \\ 3^{x-2} \cdot 8 &= 24 \\ 3^{x-2} &= 3 \quad (\text{delen door } 8) \\ 3^{x-2} &= 3^{1} \\ x - 2 &= 1 \\ x &= 3 \end{align*} \] **Antwoord:** \( x = 3 \) --- **2. \( 3^{x+1} = 3^{x} + \frac{2}{3} \)** **Oplossing:** \[ \begin{align*} 3^{x+1} &= 3^{x} + \frac{2}{3} \\ 3 \cdot 3^{x} - 3^{x} &= \frac{2}{3} \quad (\text{Omdat } 3^{x+1} = 3 \cdot 3^{x}) \\ 2 \cdot 3^{x} &= \frac{2}{3} \\ 3^{x} &= \frac{1}{3} \\ 3^{x} &= 3^{-1} \\ x &= -1 \end{align*} \] **Antwoord:** \( x = -1 \) --- **3. \( 3^{x} + 3^{x+2} = 10 \)** **Oplossing:** \[ \begin{align*} 3^{x} + 3^{x+2} &= 10 \\ 3^{x} (1 + 9) &= 10 \quad (\text{Omdat } 3^{x+2} = 9 \cdot 3^{x}) \\ 3^{x} \cdot 10 &= 10 \\ 3^{x} &= 1 \\ 3^{x} &= 3^{0} \\ x &= 0 \end{align*} \] **Antwoord:** \( x = 0 \) --- **4. \( 5^{x+1} - \frac{3}{25} = 2 \cdot 5^{x} \)** **Oplossing:** \[ \begin{align*} 5^{x+1} - \frac{3}{25} &= 2 \cdot 5^{x} \\ 5 \cdot 5^{x} - 2 \cdot 5^{x} &= \frac{3}{25} \quad (\text{Omdat } 5^{x+1} = 5 \cdot 5^{x}) \\ 3 \cdot 5^{x} &= \frac{3}{25} \\ 5^{x} &= \frac{1}{25} \\ 5^{x} &= 5^{-2} \\ x &= -2 \end{align*} \] **Antwoord:** \( x = -2 \) --- **5. \( 2^{x} + 2^{x} + 2^{x} = 96 \)** **Oplossing:** \[ \begin{align*} 3 \cdot 2^{x} &= 96 \\ 2^{x} &= 32 \\ 2^{x} &= 2^{5} \\ x &= 5 \end{align*} \] **Antwoord:** \( x = 5 \) --- **6. \( 12^{x} + 12^{x} = 288 \)** **Oplossing:** \[ \begin{align*} 2 \cdot 12^{x} &= 288 \\ 12^{x} &= 144 \\ 12^{x} &= 12^{2} \\ x &= 2 \end{align*} \] **Antwoord:** \( x = 2 \) --- **7. \( 2^{x} + 2^{x-2} = 5 \)** **Oplossing:** \[ \begin{align*} 2^{x} + 2^{x-2} &= 5 \\ 2^{x-2} \cdot 4 + 2^{x-2} &= 5 \quad (\text{Omdat } 2^{x} = 4 \cdot 2^{x-2}) \\ 2^{x-2} (4 + 1) &= 5 \\ 2^{x-2} \cdot 5 &= 5 \\ 2^{x-2} &= 1 \\ 2^{x-2} &= 2^{0} \\ x - 2 &= 0 \\ x &= 2 \end{align*} \] **Antwoord:** \( x = 2 \) --- **8. \( 2^{2x} + 4^{x+1} = 80 \)** **Oplossing:** \[ \begin{align*} 2^{2x} + 4^{x+1} &= 80 \\ 2^{2x} + (2^{2})^{x+1} &= 80 \quad (\text{Omdat } 4 = 2^{2}) \\ 2^{2x} + 2^{2x+2} &= 80 \\ 2^{2x} (1 + 4) &= 80 \quad (\text{Omdat } 2^{2} = 4) \\ 2^{2x} \cdot 5 &= 80 \\ 2^{2x} &= 16 \\ 2^{2x} &= 2^{4} \\ 2x &= 4 \\ x &= 2 \end{align*} \] **Antwoord:** \( x = 2 \) --- **Samenvatting van de oplossingen:** 1. \( x = 3 \) 2. \( x = -1 \) 3. \( x = 0 \) 4. \( x = -2 \) 5. \( x = 5 \) 6. \( x = 2 \) 7. \( x = 2 \) 8. \( x = 2 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Om deze exponentiële vergelijkingen op te lossen, gebruiken we vaak logaritmen en de eigenschappen van exponenten. Voor de eerste vergelijking \( 1: 3^{x}-3^{x-2}=24 \), herschik je het naar \( 3^{x} - \frac{3^x}{9} = 24 \). Dit wordt \( \frac{8}{9}3^{x} = 24 \), wat \( 3^{x} = 24 \cdot \frac{9}{8} = 27 \) oplevert, dus \( x=3 \). Voor \( 2: 3^{x+1} = 3^{x} + \frac{2}{3} \), kan je schrijven als \( 3 \cdot 3^{x} = 3^x + \frac{2}{3} \rightarrow (3-1)3^x = \frac{2}{3} \rightarrow 2 \cdot 3^x = \frac{2}{3} \), wat leidt tot \( 3^x = \frac{1}{3} \) en dus \( x = -1 \). Wil je verder met de andere vergelijkingen?

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy