Question
upstudy study bank question image url

Calcular \( \frac{1}{4}-\frac{1}{12} \) \( \begin{array}{l}\text { Primero escribir la resta de modo que las fracciones tengan el denominador } \\ \text { Luego restar. }\end{array} \) \[ \frac{1}{4}-\frac{1}{12}=\frac{\square}{12}-\frac{1}{12}=\frac{\square}{\square} \]

Ask by Phillips Mills. in Mexico
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{1}{4} - \frac{1}{12} = \frac{3}{12} - \frac{1}{12} = \frac{2}{12} = \frac{1}{6} \]

Solution

Para calcular \( \frac{1}{4} - \frac{1}{12} \), seguimos los siguientes pasos: 1. **Encontrar un denominador común**: El mínimo común múltiplo de 4 y 12 es 12. 2. **Convertir las fracciones al denominador común**: \[ \frac{1}{4} = \frac{3}{12} \] 3. **Realizar la resta**: \[ \frac{1}{4} - \frac{1}{12} = \frac{3}{12} - \frac{1}{12} = \frac{2}{12} \] 4. **Simplificar la fracción resultante** (opcional): \[ \frac{2}{12} = \frac{1}{6} \] Por lo tanto: \[ \frac{1}{4} - \frac{1}{12} = \frac{3}{12} - \frac{1}{12} = \frac{2}{12} = \frac{1}{6} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para restar las fracciones \( \frac{1}{4} \) y \( \frac{1}{12} \), primero necesitamos un denominador común. El mínimo común múltiplo de 4 y 12 es 12. Por lo tanto, tienes que convertir \( \frac{1}{4} \) a un denominador de 12. \[ \frac{1}{4} = \frac{3}{12} \] Ahora puedes restar: \[ \frac{3}{12} - \frac{1}{12} = \frac{3-1}{12} = \frac{2}{12} \] Finalmente, puedes simplificar \( \frac{2}{12} \) a \( \frac{1}{6} \). Así que el resultado es: \[ \frac{1}{4}-\frac{1}{12}=\frac{3}{12}-\frac{1}{12}=\frac{2}{12}=\frac{1}{6} \]

Related Questions

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy