Question
upstudy study bank question image url

Write the expression as a sum and/or difference of logarithms. Express powers as factors. \[ \log \left[\frac{x(x+7)}{(x+8)^{8}}\right], x>0 \]

Ask by Hanson Wyatt. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \log x + \log (x + 7) - 8 \log (x + 8) \]

Solution

To express the given logarithmic expression as a sum and/or difference of logarithms and to express powers as factors, follow these steps: Given expression: \[ \log \left[\frac{x(x+7)}{(x+8)^{8}}\right] \] 1. **Use the Quotient Rule**: \(\log\left(\frac{A}{B}\right) = \log A - \log B\) \[ \log \left[x(x+7)\right] - \log \left[(x+8)^{8}\right] \] 2. **Use the Product Rule**: \(\log(AB) = \log A + \log B\) \[ \log x + \log (x+7) - \log \left[(x+8)^{8}\right] \] 3. **Use the Power Rule**: \(\log(A^k) = k \log A\) \[ \log x + \log (x+7) - 8 \log (x+8) \] **Final Expression:** \[ \log x + \log (x + 7) - 8\, \log (x + 8) \] Answer: \[ \log x\;+\; \log(x + 7)\;-\;8\,\log(x + 8) \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To express the logarithmic expression as a sum and/or difference of logarithms, we can use the properties of logarithms. Starting with the expression: \[ \log \left[\frac{x(x+7)}{(x+8)^{8}}\right] \] We can break it down using the quotient rule of logarithms, which states that \(\log\left(\frac{A}{B}\right) = \log A - \log B\). This gives us: \[ \log[x(x+7)] - \log[(x+8)^{8}] \] Next, we can use the product rule of logarithms, which states that \(\log(AB) = \log A + \log B\). Hence, \[ \log[x(x+7)] = \log x + \log(x+7) \] So now, substituting back: \[ \log x + \log(x+7) - \log[(x+8)^{8}] \] Finally, applying the power rule of logarithms, which states that \(\log(A^n) = n \log A\), we have: \[ \log x + \log(x+7) - 8 \log(x+8) \] Thus, the expression can be rewritten as a sum and difference of logarithms: \[ \log x + \log(x+7) - 8 \log(x+8) \]

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy