Question
upstudy study bank question image url

3. Encuentre el valor de \( k \) tal que el resto de la división \( p(x)=x^{2}-k x+ \) entre \( q(x)=x+3 \) sea \( R(x)=5 \).

Ask by Coles Guerrero. in Chile
Jan 05,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El valor de \( k \) es \( -\dfrac{4}{3} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para encontrar el valor de \( k \), utilizamos el Teorema del Resto, que nos dice que el resto de la división de \( p(x) \) entre \( q(x) \) se puede encontrar evaluando \( p \) en la raíz de \( q(x) \). La raíz de \( q(x) = x + 3 \) es \( x = -3 \). Entonces evaluamos \( p(-3) = (-3)^2 - k(-3) = 9 + 3k \). Queremos que este valor sea igual al resto \( R(x) = 5 \), por lo que planteamos la ecuación: \[ 9 + 3k = 5. \] Despejando \( k \): \[ 3k = 5 - 9 \] \[ 3k = -4 \] \[ k = -\frac{4}{3}. \] Así que el valor de \( k \) que buscamos es \( k = -\frac{4}{3} \).

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy