Question
upstudy study bank question image url

13. \( \begin{array}{ll}\text { a) } f(x)=\frac{x-1}{x^{2}-4 x+3} ; & \text { б) } f(x)=\sqrt{x^{2}-9} \\ \text { в) } f(x)=\frac{5-x^{2}}{x^{2}+2 x-8} ; & \text { г) } f(x)=\sqrt{36-x^{2}}\end{array} \)

Ask by Simpson Carlson. in Russia
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Области определения функций: **a)** \( \mathbb{R} \setminus \{1, 3\} \) **б)** \( (-\infty, -3] \cup [3, +\infty) \) **в)** \( \mathbb{R} \setminus \{-4, 2\} \) **г)** \( [-6, 6] \)

Solution

Для заданных функций определим область определения: **a) \( f(x) = \frac{x - 1}{x^{2} - 4x + 3} \)** Необходимо, чтобы знаменатель не равнялся нулю: \[ x^{2} - 4x + 3 \neq 0 \] Решаем уравнение: \[ x^{2} - 4x + 3 = 0 \] \[ x = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2} \] \[ x = 3 \quad \text{или} \quad x = 1 \] **Область определения:** \( \mathbb{R} \setminus \{1, 3\} \) --- **б) \( f(x) = \sqrt{x^{2} - 9} \)** Подкоренное выражение должно быть неотрицательным: \[ x^{2} - 9 \geq 0 \] \[ x^{2} \geq 9 \] \[ |x| \geq 3 \] То есть: \[ x \leq -3 \quad \text{или} \quad x \geq 3 \] **Область определения:** \( (-\infty, -3] \cup [3, +\infty) \) --- **в) \( f(x) = \frac{5 - x^{2}}{x^{2} + 2x - 8} \)** Знаменатель не должен равняться нулю: \[ x^{2} + 2x - 8 \neq 0 \] Решаем уравнение: \[ x^{2} + 2x - 8 = 0 \] \[ x = \frac{-2 \pm \sqrt{4 + 32}}{2} = \frac{-2 \pm 6}{2} \] \[ x = 2 \quad \text{или} \quad x = -4 \] **Область определения:** \( \mathbb{R} \setminus \{-4, 2\} \) --- **г) \( f(x) = \sqrt{36 - x^{2}} \)** Подкоренное выражение должно быть неотрицательным: \[ 36 - x^{2} \geq 0 \] \[ x^{2} \leq 36 \] \[ |x| \leq 6 \] То есть: \[ -6 \leq x \leq 6 \] **Область определения:** \( [-6, 6] \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s dive into this with some fun insights! The first function, \(f(x)=\frac{x-1}{x^{2}-4x+3}\), showcases the concept of rational functions. The denominator can be factored into \((x-3)(x-1)\), giving us insight into its vertical asymptotes and points of discontinuity. It's fascinating how mathematicians use these functions in real life, like in physics for calculating trajectories and in economics for modeling cost functions! Now, let's look at \(f(x)=\sqrt{36-x^{2}}\). This function represents a semi-circle! When graphed, it depicts the upper half of a circle with radius 6 centered on the origin. Real-world applications of this include tasks like designing circular parks or determining the maximum height of structures within certain radial distances—math really does help shape our world!

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy