Question
upstudy study bank question image url

Calculate the limit \( \lim _{x \rightarrow 0} \frac{x e^{-x}}{3 e^{x}-3} \)

Ask by Weaver Best. in the United Kingdom
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

当 \( x \) 接近 0 时,极限 \( \lim _{x \rightarrow 0} \frac{x e^{-x}}{3 e^{x}-3} \) 的值为 \( \frac{1}{3} \)。

Solution

要计算极限 \[ \lim _{x \rightarrow 0} \frac{x e^{-x}}{3 e^{x}-3} \] 我们可以采用洛必达法则(L'Hôpital's Rule),因为当 \( x \rightarrow 0 \) 时,分子和分母都趋近于 0。 首先,对分子和分母分别求导: - 分子的导数: \[ \frac{d}{dx}(x e^{-x}) = e^{-x} + x(-e^{-x}) = e^{-x}(1 - x) \] - 分母的导数: \[ \frac{d}{dx}(3 e^{x} - 3) = 3 e^{x} \] 应用洛必达法则后,极限变为: \[ \lim _{x \rightarrow 0} \frac{e^{-x}(1 - x)}{3 e^{x}} = \frac{e^{0}(1 - 0)}{3 e^{0}} = \frac{1}{3} \] 因此,极限的值为 \[ \frac{1}{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the limit \[ L = \lim_{x \rightarrow 0} \frac{x e^{-x}}{3 e^{x}-3}, \] we start by substituting \( x = 0 \): 1. The numerator becomes \( 0 \cdot e^{0} = 0 \). 2. The denominator evaluates to \( 3 e^{0} - 3 = 3 - 3 = 0 \). Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule, which is appropriate for \( \frac{0}{0} \) indeterminate forms. According to L'Hôpital's Rule, we take the derivative of the numerator and the derivative of the denominator and then take the limit again. First, we differentiate the numerator: \[ \frac{d}{dx}(x e^{-x}) = e^{-x} + x(-e^{-x}) = e^{-x} - x e^{-x} = e^{-x}(1 - x). \] Next, we differentiate the denominator: \[ \frac{d}{dx}(3 e^{x} - 3) = 3 e^{x}. \] Now we can apply L'Hôpital's Rule: \[ L = \lim_{x \to 0} \frac{e^{-x}(1 - x)}{3 e^{x}}. \] Substituting \( x = 0 \) into this expression gives: 1. The numerator becomes \( e^{0}(1 - 0) = 1 \). 2. The denominator becomes \( 3 e^{0} = 3 \). Thus, we have: \[ L = \frac{1}{3}. \] Therefore, the limit is \[ \boxed{\frac{1}{3}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy