Simplify: \( \frac{3-\sqrt{5}}{2+\sqrt{5}} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To simplify \( \frac{3-\sqrt{5}}{2+\sqrt{5}} \), we start by multiplying the numerator and the denominator by the conjugate of the denominator, which is \( 2 - \sqrt{5} \): \[ \frac{(3 - \sqrt{5})(2 - \sqrt{5})}{(2 + \sqrt{5})(2 - \sqrt{5})} \] Calculating the denominator: \[ (2 + \sqrt{5})(2 - \sqrt{5}) = 2^2 - (\sqrt{5})^2 = 4 - 5 = -1 \] Now, calculating the numerator: \[ (3 - \sqrt{5})(2 - \sqrt{5}) = 3 \cdot 2 - 3 \cdot \sqrt{5} - \sqrt{5} \cdot 2 + (\sqrt{5})^2 \] \[ = 6 - 3\sqrt{5} - 2\sqrt{5} + 5 = 11 - 5\sqrt{5} \] Putting it all together, we get: \[ \frac{11 - 5\sqrt{5}}{-1} = -11 + 5\sqrt{5} \] Thus, the simplified expression is: \[ 5\sqrt{5} - 11 \]