Question
upstudy study bank question image url

Comprosar las marrices: \( A=\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \) y \( B=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \) que; a) \( (A+B)^{2}=A^{2}+2 A B+B^{2} \) b) \( (A-B)^{2}=A^{2}-2 A B+B^{2} \) c) \( (A+B)(A-B)=A^{2}-B^{2} \)

Ask by Cruz Hobbs. in Equatorial Guinea
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las igualdades \((A + B)^2 = A^2 + 2AB + B^2\), \((A - B)^2 = A^2 - 2AB + B^2\), y \((A + B)(A - B) = A^2 - B^2\) no se cumplen para las matrices \(A\) y \(B\) dadas.

Solution

Claro, vamos a **comprobar las relaciones matriciales** dadas para las matrices: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] ### Parte a) \((A + B)^2 = A^2 + 2AB + B^2\) **Paso 1: Calcular \(A + B\)** \[ A + B = \begin{pmatrix} 1 + 2 & 2 + (-1) \\ 3 + 1 & 0 + 3 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix} \] **Paso 2: Calcular \((A + B)^2\)** \[ (A + B)^2 = (A + B)(A + B) = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix} \] Multiplicamos las matrices: \[ \begin{pmatrix} 3 \cdot 3 + 1 \cdot 4 & 3 \cdot 1 + 1 \cdot 3 \\ 4 \cdot 3 + 3 \cdot 4 & 4 \cdot 1 + 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 9 + 4 & 3 + 3 \\ 12 + 12 & 4 + 9 \end{pmatrix} = \begin{pmatrix} 13 & 6 \\ 24 & 13 \end{pmatrix} \] **Paso 3: Calcular \(A^2\), \(B^2\) y \(2AB\)** 1. **Calcular \(A^2 = A \cdot A\)** \[ A^2 = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 0 \\ 3 \cdot 1 + 0 \cdot 3 & 3 \cdot 2 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix} \] 2. **Calcular \(B^2 = B \cdot B\)** \[ B^2 = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2 + (-1) \cdot 1 & 2 \cdot (-1) + (-1) \cdot 3 \\ 1 \cdot 2 + 3 \cdot 1 & 1 \cdot (-1) + 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] 3. **Calcular \(AB\)** \[ AB = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot (-1) + 2 \cdot 3 \\ 3 \cdot 2 + 0 \cdot 1 & 3 \cdot (-1) + 0 \cdot 3 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ 6 & -3 \end{pmatrix} \] 4. **Calcular \(2AB\)** \[ 2AB = 2 \cdot \begin{pmatrix} 4 & 5 \\ 6 & -3 \end{pmatrix} = \begin{pmatrix} 8 & 10 \\ 12 & -6 \end{pmatrix} \] **Paso 4: Sumar \(A^2 + 2AB + B^2\)** \[ A^2 + 2AB + B^2 = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} 8 & 10 \\ 12 & -6 \end{pmatrix} + \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] Sumamos elemento a elemento: \[ \begin{pmatrix} 7 + 8 + 3 & 2 + 10 + (-5) \\ 3 + 12 + 5 & 6 + (-6) + 8 \end{pmatrix} = \begin{pmatrix} 18 & 7 \\ 20 & 8 \end{pmatrix} \] **Comparación:** \[ (A + B)^2 = \begin{pmatrix} 13 & 6 \\ 24 & 13 \end{pmatrix} \neq A^2 + 2AB + B^2 = \begin{pmatrix} 18 & 7 \\ 20 & 8 \end{pmatrix} \] **Conclusión:** La igualdad no se cumple. ### Parte b) \((A - B)^2 = A^2 - 2AB + B^2\) **Paso 1: Calcular \(A - B\)** \[ A - B = \begin{pmatrix} 1 - 2 & 2 - (-1) \\ 3 - 1 & 0 - 3 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 2 & -3 \end{pmatrix} \] **Paso 2: Calcular \((A - B)^2\)** \[ (A - B)^2 = (A - B)(A - B) = \begin{pmatrix} -1 & 3 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -3 \end{pmatrix} \] Multiplicamos las matrices: \[ \begin{pmatrix} (-1) \cdot (-1) + 3 \cdot 2 & (-1) \cdot 3 + 3 \cdot (-3) \\ 2 \cdot (-1) + (-3) \cdot 2 & 2 \cdot 3 + (-3) \cdot (-3) \end{pmatrix} = \begin{pmatrix} 1 + 6 & -3 -9 \\ -2 -6 & 6 + 9 \end{pmatrix} = \begin{pmatrix} 7 & -12 \\ -8 & 15 \end{pmatrix} \] **Paso 3: Calcular \(A^2 - 2AB + B^2\)** Ya calculamos previamente: \[ A^2 = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix}, \quad 2AB = \begin{pmatrix} 8 & 10 \\ 12 & -6 \end{pmatrix}, \quad B^2 = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] Ahora restamos: \[ A^2 - 2AB + B^2 = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix} - \begin{pmatrix} 8 & 10 \\ 12 & -6 \end{pmatrix} + \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] Realizamos la resta y suma elemento a elemento: \[ \begin{pmatrix} 7 - 8 + 3 & 2 - 10 + (-5) \\ 3 - 12 + 5 & 6 - (-6) + 8 \end{pmatrix} = \begin{pmatrix} 2 & -13 \\ -4 & 20 \end{pmatrix} \] **Comparación:** \[ (A - B)^2 = \begin{pmatrix} 7 & -12 \\ -8 & 15 \end{pmatrix} \neq A^2 - 2AB + B^2 = \begin{pmatrix} 2 & -13 \\ -4 & 20 \end{pmatrix} \] **Conclusión:** La igualdad no se cumple. ### Parte c) \((A + B)(A - B) = A^2 - B^2\) **Paso 1: Calcular \((A + B)(A - B)\)** Ya tenemos: \[ A + B = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix}, \quad A - B = \begin{pmatrix} -1 & 3 \\ 2 & -3 \end{pmatrix} \] Multiplicamos las matrices: \[ (A + B)(A - B) = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 3 \cdot (-1) + 1 \cdot 2 & 3 \cdot 3 + 1 \cdot (-3) \\ 4 \cdot (-1) + 3 \cdot 2 & 4 \cdot 3 + 3 \cdot (-3) \end{pmatrix} \] \[ = \begin{pmatrix} -3 + 2 & 9 - 3 \\ -4 + 6 & 12 - 9 \end{pmatrix} = \begin{pmatrix} -1 & 6 \\ 2 & 3 \end{pmatrix} \] **Paso 2: Calcular \(A^2 - B^2\)** Ya tenemos: \[ A^2 = \begin{pmatrix} 7 & 2 \\ 3 & 6 \end{pmatrix}, \quad B^2 = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] Restamos elemento a elemento: \[ A^2 - B^2 = \begin{pmatrix} 7 - 3 & 2 - (-5) \\ 3 - 5 & 6 - 8 \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ -2 & -2 \end{pmatrix} \] **Comparación:** \[ (A + B)(A - B) = \begin{pmatrix} -1 & 6 \\ 2 & 3 \end{pmatrix} \neq A^2 - B^2 = \begin{pmatrix} 4 & 7 \\ -2 & -2 \end{pmatrix} \] **Conclusión:** La igualdad no se cumple. ### **Resumen de Resultados** - **a)** \((A + B)^2 \neq A^2 + 2AB + B^2\) - **b)** \((A - B)^2 \neq A^2 - 2AB + B^2\) - **c)** \((A + B)(A - B) \neq A^2 - B^2\) **Observación:** Estas igualdades no se cumplen en general para matrices, a menos que las matrices involucradas conmutan (es decir, \(AB = BA\)). En este caso, como \(AB \neq BA\), las igualdades no se verifican.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver estas comparaciones, primero necesitamos calcular \( A^2 \), \( B^2 \), y \( AB \). 1. **Calculando \( A^2 \):** \[ A^2 = A \cdot A = \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) = \left(\begin{array}{ll}(1 \cdot 1 + 2 \cdot 3) & (1 \cdot 2 + 2 \cdot 0) \\ (3 \cdot 1 + 0 \cdot 3) & (3 \cdot 2 + 0 \cdot 0)\end{array}\right) = \left(\begin{array}{ll}7 & 2 \\ 3 & 6\end{array}\right) \] 2. **Calculando \( B^2 \):** \[ B^2 = B \cdot B = \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}(2 \cdot 2 + -1 \cdot 1) & (2 \cdot -1 + -1 \cdot 3) \\ (1 \cdot 2 + 3 \cdot 1) & (1 \cdot -1 + 3 \cdot 3)\end{array}\right) = \left(\begin{array}{cc}3 & -5 \\ 5 & 8\end{array}\right) \] 3. **Calculando \( AB \):** \[ AB = A \cdot B = \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{ll}(1 \cdot 2 + 2 \cdot 1) & (1 \cdot -1 + 2 \cdot 3) \\ (3 \cdot 2 + 0 \cdot 1) & (3 \cdot -1 + 0 \cdot 3)\end{array}\right) = \left(\begin{array}{ll}4 & 5 \\ 6 & -3\end{array}\right) \] Ahora que tenemos \( A^2 \), \( B^2 \), y \( AB \), procedemos con las comparaciones: a) Para comprobar \( (A+B)^{2} = A^{2} + 2AB + B^{2} \): Calculamos \( A + B \): \[ A + B = \left(\begin{array}{ll}1 + 2 & 2 - 1 \\ 3 + 1 & 0 + 3\end{array}\right) = \left(\begin{array}{ll}3 & 1 \\ 4 & 3\end{array}\right) \] \[ (A + B)^2 = \left(\begin{array}{ll}3 & 1 \\ 4 & 3\end{array}\right) \cdot \left(\begin{array}{ll}3 & 1 \\ 4 & 3\end{array}\right) = \left(\begin{array}{ll}(3 \cdot 3 + 1 \cdot 4) & (3 \cdot 1 + 1 \cdot 3) \\ (4 \cdot 3 + 3 \cdot 4) & (4 \cdot 1 + 3 \cdot 3)\end{array}\right) = \left(\begin{array}{ll}13 & 6 \\ 28 & 13\end{array}\right) \] Ahora comprobamos \( A^2 + 2AB + B^2 \): \[ A^2 + 2AB + B^2 = \left(\begin{array}{ll}7 & 2 \\ 3 & 6\end{array}\right) + 2\left(\begin{array}{ll}4 & 5 \\ 6 & -3\end{array}\right) + \left(\begin{array}{ll}3

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy