Question
upstudy study bank question image url

Find the reduced row echelon form of this augmented matrix \( \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 6 & -9 & 1 & 250\end{array}\right] \)

Ask by Frazier Wheeler. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The Reduced Row Echelon Form (RREF) of the given augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{bmatrix} \]

Solution

To find the **Reduced Row Echelon Form (RREF)** of the given augmented matrix: \[ \left[\begin{array}{cccc} 1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 6 & -9 & 1 & 250 \end{array}\right] \] we will perform a series of row operations to simplify the matrix step by step. ### Step 1: Eliminate the Entry Below the Leading 1 in Column 1 - **Objective:** Make the entry below the leading 1 in the first column (which is 6 in Row 3) equal to 0. - **Operation:** \( \text{Row3} = \text{Row3} - 6 \times \text{Row1} \) \[ \begin{aligned} \text{Row3} &= [6, -9, 1, 250] - 6 \times [1, -5, 0, 150] \\ &= [6 - 6, -9 + 30, 1 - 0, 250 - 900] \\ &= [0, 21, 1, -650] \end{aligned} \] **Updated Matrix:** \[ \left[\begin{array}{cccc} 1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 21 & 1 & -650 \end{array}\right] \] ### Step 2: Eliminate the Entry Below the Leading 1 in Column 2 - **Objective:** Make the entry below the leading 1 in the second column (which is 21 in Row 3) equal to 0. - **Operation:** \( \text{Row3} = \text{Row3} - 21 \times \text{Row2} \) \[ \begin{aligned} \text{Row3} &= [0, 21, 1, -650] - 21 \times [0, 1, 0, 400] \\ &= [0 - 0, 21 - 21, 1 - 0, -650 - 8400] \\ &= [0, 0, 1, -9050] \end{aligned} \] **Updated Matrix:** \[ \left[\begin{array}{cccc} 1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{array}\right] \] ### Step 3: Eliminate the Entry Above the Leading 1 in Column 2 - **Objective:** Make the entry above the leading 1 in the second column (which is -5 in Row 1) equal to 0. - **Operation:** \( \text{Row1} = \text{Row1} + 5 \times \text{Row2} \) \[ \begin{aligned} \text{Row1} &= [1, -5, 0, 150] + 5 \times [0, 1, 0, 400] \\ &= [1 + 0, -5 + 5, 0 + 0, 150 + 2000] \\ &= [1, 0, 0, 2150] \end{aligned} \] **Final RREF Matrix:** \[ \left[\begin{array}{cccc} 1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{array}\right] \] ### Conclusion The **Reduced Row Echelon Form** of the given augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{bmatrix} \] **Answer:** After row reduction, the RREF is  1 0 0 2150  0 1 0 400  0 0 1 −9050 Written as a matrix, [ [1  0  0  2150],  [0  1  0  400],  [0  0  1 −9050] ]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the reduced row echelon form (RREF) of the given augmented matrix \[ \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 6 & -9 & 1 & 250\end{array}\right], \] we can perform row operations. Let's denote the rows as \( R_1, R_2, R_3 \). 1. We start with the original matrix: \[ R_1 = \left[1, -5, 0, 150\right], \quad R_2 = \left[0, 1, 0, 400\right], \quad R_3 = \left[6, -9, 1, 250\right] \] 2. To eliminate the leading \(6\) in \(R_3\) (first column), we can subtract \(6 \times R_1\) from \(R_3\): \[ R_3' = R_3 - 6R_1 = \left[6, -9, 1, 250\right] - 6 \left[1, -5, 0, 150\right] = \left[6 - 6, -9 + 30, 1 - 0, 250 - 900\right] = \left[0, 21, 1, -650\right] \] 3. Now our matrix looks like this: \[ \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 21 & 1 & -650\end{array}\right] \] 4. Next, we eliminate the \(21\) in \(R_3\) (second column) by subtracting \(21 \times R_2\) from \(R_3'\): \[ R_3'' = R_3' - 21R_2 = \left[0, 21, 1, -650\right] - 21\left[0, 1, 0, 400\right] = \left[0, 0, 1, -650 - 8400\right] = \left[0, 0, 1, -9050\right] \] 5. Now our matrix is: \[ \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050\end{array}\right] \] 6. Now we will back substitute to clean up \(R_1\) by adding \(5 \times R_2\) to \(R_1\): \[ R_1' = R_1 + 5R_2 = \left[1, -5, 0, 150\right] + 5\left[0, 1, 0, 400\right] = \left[1, 0, 0, 150 + 2000\right] = \left[1, 0, 0, 2150\right] \] 7. Finally, we will also clean up \(R_2\) using the new \(R_1\): \[ R_2' = R_2 - 400R_3'' = \left[0, 1, 0, 400\right] - 0 = \left[0, 1, 0, 400\right] \] In the end, the matrix in reduced row echelon form is: \[ \left[\begin{array}{cccc}1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050\end{array}\right]. \] Thus, the RREF of the given augmented matrix is: \[ \left[\begin{array}{cccc}1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050\end{array}\right]. \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy