Question
upstudy study bank question image url

Dados los puntos \( (2,-5) \) y \( (6,-3) \) encuentra: La pendiente \( \mathrm{m}= \) La ecuación de la recta en su forma pendiente ordenada \[ \mathrm{y}= \] La ordenada al origen \( \mathrm{b}= \) Ecuación general \( \quad 0= \)

Ask by Wood Ortiz. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Resultados:** - **Pendiente \( m \):** \( \frac{1}{2} \) - **Ecuación de la recta:** \( y = \frac{1}{2}x - 6 \) - **Ordenada al origen \( b \):** \( -6 \) - **Ecuación general:** \( 0 = x - 2y - 12 \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

Para encontrar la pendiente \( m \) usando los puntos \( (2,-5) \) y \( (6,-3) \), utilizamos la fórmula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - (-5)}{6 - 2} = \frac{2}{4} = \frac{1}{2} \] La ecuación de la recta en su forma pendiente ordenada es: \[ y = mx + b \implies y = \frac{1}{2}x + b \] Para encontrar la ordenada al origen \( b \), utilizamos uno de los puntos. Usamos \( (2,-5) \): \[ -5 = \frac{1}{2}(2) + b \implies -5 = 1 + b \implies b = -6 \] Por lo tanto, la ecuación en forma pendiente ordenada es: \[ y = \frac{1}{2}x - 6 \] La ecuación general de la recta se puede escribir como: \[ 0 = \frac{1}{2}x - y - 6 \implies 0 = x - 2y - 12. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy