Pregunta
upstudy study bank question image url

Find the reduced row echelon form of this augmented matrix \( \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 6 & -9 & 1 & 250\end{array}\right] \)

Ask by Frazier Wheeler. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The Reduced Row Echelon Form (RREF) of the given augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{bmatrix} \]

Solución

To find the **Reduced Row Echelon Form (RREF)** of the given augmented matrix: \[ \left[\begin{array}{cccc} 1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 6 & -9 & 1 & 250 \end{array}\right] \] we will perform a series of row operations to simplify the matrix step by step. ### Step 1: Eliminate the Entry Below the Leading 1 in Column 1 - **Objective:** Make the entry below the leading 1 in the first column (which is 6 in Row 3) equal to 0. - **Operation:** \( \text{Row3} = \text{Row3} - 6 \times \text{Row1} \) \[ \begin{aligned} \text{Row3} &= [6, -9, 1, 250] - 6 \times [1, -5, 0, 150] \\ &= [6 - 6, -9 + 30, 1 - 0, 250 - 900] \\ &= [0, 21, 1, -650] \end{aligned} \] **Updated Matrix:** \[ \left[\begin{array}{cccc} 1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 21 & 1 & -650 \end{array}\right] \] ### Step 2: Eliminate the Entry Below the Leading 1 in Column 2 - **Objective:** Make the entry below the leading 1 in the second column (which is 21 in Row 3) equal to 0. - **Operation:** \( \text{Row3} = \text{Row3} - 21 \times \text{Row2} \) \[ \begin{aligned} \text{Row3} &= [0, 21, 1, -650] - 21 \times [0, 1, 0, 400] \\ &= [0 - 0, 21 - 21, 1 - 0, -650 - 8400] \\ &= [0, 0, 1, -9050] \end{aligned} \] **Updated Matrix:** \[ \left[\begin{array}{cccc} 1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{array}\right] \] ### Step 3: Eliminate the Entry Above the Leading 1 in Column 2 - **Objective:** Make the entry above the leading 1 in the second column (which is -5 in Row 1) equal to 0. - **Operation:** \( \text{Row1} = \text{Row1} + 5 \times \text{Row2} \) \[ \begin{aligned} \text{Row1} &= [1, -5, 0, 150] + 5 \times [0, 1, 0, 400] \\ &= [1 + 0, -5 + 5, 0 + 0, 150 + 2000] \\ &= [1, 0, 0, 2150] \end{aligned} \] **Final RREF Matrix:** \[ \left[\begin{array}{cccc} 1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{array}\right] \] ### Conclusion The **Reduced Row Echelon Form** of the given augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050 \end{bmatrix} \] **Answer:** After row reduction, the RREF is  1 0 0 2150  0 1 0 400  0 0 1 −9050 Written as a matrix, [ [1  0  0  2150],  [0  1  0  400],  [0  0  1 −9050] ]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the reduced row echelon form (RREF) of the given augmented matrix \[ \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 6 & -9 & 1 & 250\end{array}\right], \] we can perform row operations. Let's denote the rows as \( R_1, R_2, R_3 \). 1. We start with the original matrix: \[ R_1 = \left[1, -5, 0, 150\right], \quad R_2 = \left[0, 1, 0, 400\right], \quad R_3 = \left[6, -9, 1, 250\right] \] 2. To eliminate the leading \(6\) in \(R_3\) (first column), we can subtract \(6 \times R_1\) from \(R_3\): \[ R_3' = R_3 - 6R_1 = \left[6, -9, 1, 250\right] - 6 \left[1, -5, 0, 150\right] = \left[6 - 6, -9 + 30, 1 - 0, 250 - 900\right] = \left[0, 21, 1, -650\right] \] 3. Now our matrix looks like this: \[ \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 21 & 1 & -650\end{array}\right] \] 4. Next, we eliminate the \(21\) in \(R_3\) (second column) by subtracting \(21 \times R_2\) from \(R_3'\): \[ R_3'' = R_3' - 21R_2 = \left[0, 21, 1, -650\right] - 21\left[0, 1, 0, 400\right] = \left[0, 0, 1, -650 - 8400\right] = \left[0, 0, 1, -9050\right] \] 5. Now our matrix is: \[ \left[\begin{array}{cccc}1 & -5 & 0 & 150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050\end{array}\right] \] 6. Now we will back substitute to clean up \(R_1\) by adding \(5 \times R_2\) to \(R_1\): \[ R_1' = R_1 + 5R_2 = \left[1, -5, 0, 150\right] + 5\left[0, 1, 0, 400\right] = \left[1, 0, 0, 150 + 2000\right] = \left[1, 0, 0, 2150\right] \] 7. Finally, we will also clean up \(R_2\) using the new \(R_1\): \[ R_2' = R_2 - 400R_3'' = \left[0, 1, 0, 400\right] - 0 = \left[0, 1, 0, 400\right] \] In the end, the matrix in reduced row echelon form is: \[ \left[\begin{array}{cccc}1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050\end{array}\right]. \] Thus, the RREF of the given augmented matrix is: \[ \left[\begin{array}{cccc}1 & 0 & 0 & 2150 \\ 0 & 1 & 0 & 400 \\ 0 & 0 & 1 & -9050\end{array}\right]. \]

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad