Question
upstudy study bank question image url

\[ \text { QUESTION } 2 \] Write the repeating decimal number \( 2.7 \mathbf{1} \delta \) as an improper fraction Write the repeating decimal number \( 10, \overline{213} \) as an improper fraction

Ask by Reed George. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The repeating decimal \( 2.7\overline{1} \) is equal to the improper fraction \( \frac{122}{45} \), and the repeating decimal \( 10.\overline{213} \) is equal to the improper fraction \( \frac{3401}{333} \).

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(x=10+0.\overline{213}\) - step1: Simplify: \(x=\frac{3401}{333}\) Solve the equation \( x=2.7+0.0\overline{1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(x=2.7+0\overline{1}\) - step1: Simplify: \(x=\frac{122}{45}\) Let's convert the repeating decimal numbers into improper fractions step by step. ### 1. Converting \( 2.7\overline{1} \) to an improper fraction Let \( x = 2.7\overline{1} \). To express this as a fraction, we can separate the non-repeating and repeating parts: 1. **Separate the decimal**: \[ x = 2.7 + 0.0\overline{1} \] 2. **Convert \( 2.7 \) to a fraction**: \[ 2.7 = \frac{27}{10} \] 3. **Convert \( 0.0\overline{1} \)**: Let \( y = 0.0\overline{1} \). \[ 10y = 0.1\overline{1} \] Subtracting the original equation from this: \[ 10y - y = 0.1\overline{1} - 0.0\overline{1} \implies 9y = 0.1 \implies y = \frac{1}{90} \] 4. **Combine the fractions**: \[ x = \frac{27}{10} + \frac{1}{90} \] To add these fractions, find a common denominator (which is 90): \[ x = \frac{27 \times 9}{90} + \frac{1}{90} = \frac{243 + 1}{90} = \frac{244}{90} \] Simplifying gives: \[ x = \frac{122}{45} \] ### 2. Converting \( 10.\overline{213} \) to an improper fraction Let \( x = 10.\overline{213} \). 1. **Separate the decimal**: \[ x = 10 + 0.\overline{213} \] 2. **Convert \( 0.\overline{213} \)**: Let \( y = 0.\overline{213} \). \[ 1000y = 213.\overline{213} \] Subtracting the original equation from this: \[ 1000y - y = 213.\overline{213} - 0.\overline{213} \implies 999y = 213 \implies y = \frac{213}{999} \] Simplifying gives: \[ y = \frac{71}{333} \] 3. **Combine the fractions**: \[ x = 10 + \frac{71}{333} = \frac{10 \times 333 + 71}{333} = \frac{3330 + 71}{333} = \frac{3401}{333} \] ### Final Results - The improper fraction for \( 2.7\overline{1} \) is \( \frac{122}{45} \). - The improper fraction for \( 10.\overline{213} \) is \( \frac{3401}{333} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To convert the repeating decimal \( 2.7\overline{1} \) into an improper fraction, we can express it as \( 2.7 + 0.0\overline{1} \). The repeating part \( 0.0\overline{1} \) can be approached by letting \( x = 0.0\overline{1} \). Multiplying by 10 gives us \( 10x = 0.\overline{1} \), and then multiplying by 10 again results in \( 100x = 1.\overline{1} \). Subtracting these gives \( 99x = 1 \), thus \( x = \frac{1}{99} \). Therefore, \( 2.7\overline{1} = 2.7 + \frac{1}{99} = \frac{27}{10} + \frac{1}{99} \). To add these fractions, we find a common denominator of 990, yielding \( \frac{27 \cdot 99}{990} + \frac{10}{990} = \frac{2673 + 10}{990} = \frac{2683}{990} \). For the decimal \( 10.\overline{213} \), we can similarly let \( y = 10.\overline{213} \). By multiplying through by 1000, we have \( 1000y = 10213.\overline{213} \), allowing us to subtract to isolate the repeating part: \( 1000y - y = 10213.\overline{213} - 10.\overline{213} \) yielding \( 999y = 10203 \). Therefore, \( y = \frac{10203}{999} \). After simplifying by dividing both the numerator and the denominator by 3, we obtain \( y = \frac{3401}{333} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy