Question
\( \frac{\text { Factorise }}{9 y-6} \) \( 2.92(y-8) \) \( 4.70+10 q \) \( 70(9+5) \) \( 6 \begin{array}{r}8-129 \\ 8(9-6)\end{array} \) \( 8.15 y-20 \) \( 15(y-5) \) \( 10.4 x(14 x y) \) \( 4 x(12) \) 12
Ask by Reeves Joseph. in South Africa
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Here are the factored forms of the given expressions:
1. \( 9y - 6 = 3(3y - 2) \)
2. \( 2.92(y - 8) \) (already factored)
3. \( 4.70 + 10q = 0.10(47 + 100q) \) or \( 10(0.47 + q) \)
4. \( 70(9 + 5) = 70 \times 14 = 980 \) (prime factors: \( 2^2 \times 5 \times 7^2 \))
5. \( 6(8 - 129) = -726 \) and \( 6 \times 8 \times (9 - 6) = 144 \)
6. \( 8.15y - 20 = 0.05(163y - 400) \)
7. \( 15(y - 5) \) (already factored)
8. \( 10.4x(14xy) = 145.6x^2y \) (or \( 0.8(182x^2y) \))
9. \( 4x(12) = 48x \) (prime factors: \( 2^4 \times 3 \times x \))
10. \( 12 = 2^2 \times 3 \)
If you need further simplification or specific factoring methods, let me know!
Solution
Certainly! Let's factorize each of the given expressions step by step.
---
1. **\( 9y - 6 \)**
- **Factorize the greatest common factor (GCF):**
\[
9y - 6 = 3(3y - 2)
\]
2. **\( 2.92(y - 8) \)**
- **Already in factored form:**
\[
2.92(y - 8)
\]
3. **\( 4.70 + 10q \)**
- **Factor out the GCF of 0.10:**
\[
4.70 + 10q = 0.10(47 + 100q)
\]
- **Alternatively, factor out 10:**
\[
4.70 + 10q = 10(0.47 + q)
\]
4. **\( 70(9 + 5) \)**
- **Simplify inside the parentheses:**
\[
70(9 + 5) = 70 \times 14 = 980
\]
- **Prime factorization of 980:**
\[
980 = 2^2 \times 5 \times 7^2
\]
5. **\( 6 \begin{array}{r}8 - 129 \\ 8(9 - 6)\end{array} \)**
- **Assuming two separate expressions:**
a. **First Expression:**
\[
6(8 - 129) = 6(-121) = -726
\]
b. **Second Expression:**
\[
6 \times 8 \times (9 - 6) = 6 \times 8 \times 3 = 144
\]
6. **\( 8.15y - 20 \)**
- **Factor out the GCF of 0.05:**
\[
8.15y - 20 = 0.05(163y - 400)
\]
7. **\( 15(y - 5) \)**
- **Already in factored form:**
\[
15(y - 5)
\]
8. **\( 10.4x(14xy) \)**
- **Multiply the constants and combine like terms:**
\[
10.4x \times 14xy = 145.6x^2y
\]
- **Factor out the GCF if desired (e.g., 0.8):**
\[
145.6x^2y = 0.8(182x^2y)
\]
9. **\( 4x(12) \)**
- **Multiply the constants:**
\[
4x \times 12 = 48x
\]
- **Prime factorization of 48:**
\[
48x = 2^4 \times 3 \times x
\]
10. **\( 12 \)**
- **Prime factorization:**
\[
12 = 2^2 \times 3
\]
---
If you need further simplification or have specific preferences for factoring (like factoring over integers, primes, etc.), feel free to let me know!
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
To factorise \(9y - 6\), you can start by finding the greatest common factor (GCF) of the terms, which is 3. So, you can rewrite this as \(3(3y - 2)\). It’s like having a cake and cutting it into smaller slices – you’re simplifying the expression while keeping the overall 'flavor' intact! For the expression \(10.4x(14xy)\), notice how it involves both a coefficient and variables. Multiplying these together allows you to combine them into one expression: \(10.4 \cdot 14xy = 145.6xy\). This showcases the beauty of algebra – combining terms to create a neat package!