Responder
Here are the factored forms of the given expressions:
1. \( 9y - 6 = 3(3y - 2) \)
2. \( 2.92(y - 8) \) (already factored)
3. \( 4.70 + 10q = 0.10(47 + 100q) \) or \( 10(0.47 + q) \)
4. \( 70(9 + 5) = 70 \times 14 = 980 \) (prime factors: \( 2^2 \times 5 \times 7^2 \))
5. \( 6(8 - 129) = -726 \) and \( 6 \times 8 \times (9 - 6) = 144 \)
6. \( 8.15y - 20 = 0.05(163y - 400) \)
7. \( 15(y - 5) \) (already factored)
8. \( 10.4x(14xy) = 145.6x^2y \) (or \( 0.8(182x^2y) \))
9. \( 4x(12) = 48x \) (prime factors: \( 2^4 \times 3 \times x \))
10. \( 12 = 2^2 \times 3 \)
If you need further simplification or specific factoring methods, let me know!
Solución
Certainly! Let's factorize each of the given expressions step by step.
---
1. **\( 9y - 6 \)**
- **Factorize the greatest common factor (GCF):**
\[
9y - 6 = 3(3y - 2)
\]
2. **\( 2.92(y - 8) \)**
- **Already in factored form:**
\[
2.92(y - 8)
\]
3. **\( 4.70 + 10q \)**
- **Factor out the GCF of 0.10:**
\[
4.70 + 10q = 0.10(47 + 100q)
\]
- **Alternatively, factor out 10:**
\[
4.70 + 10q = 10(0.47 + q)
\]
4. **\( 70(9 + 5) \)**
- **Simplify inside the parentheses:**
\[
70(9 + 5) = 70 \times 14 = 980
\]
- **Prime factorization of 980:**
\[
980 = 2^2 \times 5 \times 7^2
\]
5. **\( 6 \begin{array}{r}8 - 129 \\ 8(9 - 6)\end{array} \)**
- **Assuming two separate expressions:**
a. **First Expression:**
\[
6(8 - 129) = 6(-121) = -726
\]
b. **Second Expression:**
\[
6 \times 8 \times (9 - 6) = 6 \times 8 \times 3 = 144
\]
6. **\( 8.15y - 20 \)**
- **Factor out the GCF of 0.05:**
\[
8.15y - 20 = 0.05(163y - 400)
\]
7. **\( 15(y - 5) \)**
- **Already in factored form:**
\[
15(y - 5)
\]
8. **\( 10.4x(14xy) \)**
- **Multiply the constants and combine like terms:**
\[
10.4x \times 14xy = 145.6x^2y
\]
- **Factor out the GCF if desired (e.g., 0.8):**
\[
145.6x^2y = 0.8(182x^2y)
\]
9. **\( 4x(12) \)**
- **Multiply the constants:**
\[
4x \times 12 = 48x
\]
- **Prime factorization of 48:**
\[
48x = 2^4 \times 3 \times x
\]
10. **\( 12 \)**
- **Prime factorization:**
\[
12 = 2^2 \times 3
\]
---
If you need further simplification or have specific preferences for factoring (like factoring over integers, primes, etc.), feel free to let me know!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución