Question
\( \left. \begin{array} { l } { f ( x ) = \left\{ \begin{array} { l r } { 2 x ^ { 3 } - 1 , } & { x < 1 } \\ { 3 , } & { 1 \leq x < 5 } \\ { | x - 2 | , } & { x \geq 5 } \end{array} \right.} \\ { f ( 8 ) = } \\ { f ( 0 ) = } \\ { } \end{array} \right. \)
Ask by Powell Mathis. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( f(8) = 6 \) and \( f(0) = -1 \).
Solution
Let's evaluate the piecewise function \( f(x) \) at the specified points.
The function is defined as:
\[
f(x) =
\begin{cases}
2x^3 - 1 & \text{if } x < 1 \\
3 & \text{if } 1 \leq x < 5 \\
|x - 2| & \text{if } x \geq 5
\end{cases}
\]
### 1. Calculate \( f(8) \):
- **Determine the applicable case:**
Since \( 8 \geq 5 \), we use the third case: \( f(x) = |x - 2| \).
- **Compute \( f(8) \):**
\[
f(8) = |8 - 2| = |6| = 6
\]
**Thus, \( f(8) = 6 \).**
### 2. Calculate \( f(0) \):
- **Determine the applicable case:**
Since \( 0 < 1 \), we use the first case: \( f(x) = 2x^3 - 1 \).
- **Compute \( f(0) \):**
\[
f(0) = 2(0)^3 - 1 = 0 - 1 = -1
\]
**Thus, \( f(0) = -1 \).**
### Summary:
\[
\begin{align*}
f(8) &= 6 \\
f(0) &= -1
\end{align*}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To find \( f(8) \), we look at the piece of the function that applies when \( x \geq 5 \). According to the given function \( f(x) = |x - 2| \) for \( x \geq 5 \). Thus, \[ f(8) = |8 - 2| = |6| = 6. \] Next, for \( f(0) \), we see that \( 0 < 1 \), which falls under the first case of the piecewise function. Thus, \[ f(0) = 2(0)^3 - 1 = 0 - 1 = -1. \] So, the final answers are: \( f(8) = 6 \) and \( f(0) = -1 \).