Passo 1: Dalla terza equazione , possiamo dedurre che:
Consideriamo due casi distinti:
Caso 1:
Sostituendo nella prima equazione:
Se , allora .
Sostituendo e nella seconda equazione:
Quindi, .
Caso 2:
Sostituendo nella prima equazione:
Fattorizzando:
Ciò implica che:
Se , allora e dalla seconda equazione otteniamo , il che conferma .
Se , sostituendo nella seconda equazione:
Anche in questo caso, .
Conclusione: L’unica soluzione al sistema di equazioni dato è:
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg
Explain
Simplify this solution
The Deep Dive
To solve this system of equations, start by analyzing the third equation: . This simplifies to , which means or . You can substitute back into the first two equations to determine more about and .
You might find it interesting that systems of equations like this one can model real-world scenarios, such as equilibrium in physical systems or optimization problems in economics. For example, imagine having two businesses that need to optimize their costs while managing shared resources — solving these kinds of equations can help in practical decision-making.
Don’t forget to check for common mistakes like overlooking the possibilities of negative values or missing out on simplifying the equations further. When handling multiple variables, it’s easy to misinterpret relationships or lose track of constraints. It’s important to be methodical and double-check each step along the way to avoid getting tangled in the calculations!