Question
upstudy study bank question image url

Find the largest region in the \( x y \)-plane in which the following function is continuous. \[ f(x, y)=\ln (x-9 y) \] Click for List \[ \text { Submit Assignment Quit \& Save } \]

Ask by Ray Conner. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The function \( f(x, y) = \ln(x - 9y) \) is continuous for all points \((x, y)\) where \( x - 9y > 0 \).

Solution

The function \( f(x, y) = \ln(x - 9y) \) is defined and continuous wherever the argument of the logarithm is positive. **Condition for Continuity:** \[ x - 9y > 0 \] **Solving for \( y \):** \[ y < \frac{x}{9} \] **Largest Region of Continuity:** The largest region in the \( xy \)-plane where \( f(x, y) \) is continuous consists of all points \((x, y)\) that satisfy the inequality \( x - 9y > 0 \). Geometrically, this is the half-plane below the line \( y = \frac{x}{9} \). **Summary:** - **Region:** All real numbers \( x \) and \( y \) such that \( x - 9y > 0 \). - **Equivalent Statement:** \( y < \frac{x}{9} \). Therefore, the function \( f(x, y) \) is continuous for all points \((x, y)\) in the plane where \( x - 9y \) is positive. **Graphical Representation:** ![Region of Continuity](https://i.imgur.com/7ZK5Qlz.png) *The shaded region represents all points where \( y < \frac{x}{9} \).* --- **Final Answer:** All real points with x – 9 y positive. In other words, f  is continuous for all (x, y) with x − 9y > 0

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To determine where the function \( f(x, y) = \ln(x - 9y) \) is continuous, we look for the conditions under which the argument of the logarithm is positive, since the natural logarithm is only defined for positive arguments. Thus, we need: \[ x - 9y > 0 \] This leads us to the inequality: \[ x > 9y \] The region in the \( xy \)-plane that satisfies this inequality is above the line \( x = 9y \). This line has a slope of \( \frac{1}{9} \) and passes through the origin, dividing the plane into two distinct regions. The area where \( f(x,y) \) is continuous is therefore the half-plane above the line defined by \( x = 9y \). The largest region where \( f \) is continuous is not open-ended, as for every point in this region, there is a corresponding point on the line where the function is undefined. You can visualize this as a slanted band extending infinitely in the positive \( x \) and \( y \) directions, but avoiding the boundary \( x = 9y \). To further clarify, this region includes all points where you can draw vectors from the origin that make an angle steeper than that of the line \( y = \frac{1}{9}x \). Therefore, any point above the line is where the function is happily defined!

Related Questions

\( \qquad \) . .2025 Праклнческая работа N.16. Формулы н прави Исследованне функций с помощью пронзводн A60.1bшee н нанsенbшee значення Функции. Часть 1. Формулы п правила дифференцирования. Теоретический матернал для изучения: Учебннк по алтебре н началам математнческого ана.твза (автор Мордковнч А.Г.) §28. Oтветьте на вопросы: 1. Запишнгте формулы дифферениирования (чему равны производные следуюших элеменгарных функииі̆): \( C \) (const), \( x,(k x+m),\left(x^{2}\right), \frac{1}{x^{1}} \sqrt{x}, \sin x, \cos x \) 2. Выпииите правила длфференцирования (можно в виде формул): пропзводная суммы ити разности, что можно делать с постоянным множителем, производная произведения, производная частного. 3. Запишите формулы дифференцирования функшй \( \chi^{n} \) tgx, \( \operatorname{ctg} x \). 4. Запишите правило дифференцирования функции (kx+m). Выполните залания: 1. Найдите производные следующих функиий: a) \( \left.y=x^{4}-7 x^{2} ; 6\right)^{y-8 \sqrt{x}+\frac{1}{x}} \); B) \( y=8 \operatorname{tg} x-\sin x \); r) \( y=\left(x^{2}+3\right)\left(x^{4}-1\right) \) 2. Найдите значение пронзводной функини в точке хо: a) \( y=x^{3}+8 x-4, x_{0}=1 \). (0) \( r=\frac{1}{r}-6, x_{0}=1 \) ; B) \( y=\sqrt{x}+5 . x_{n}=4 \)
Calculus Russia Feb 04, 2025

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy