Question
Using the following equations, find \( g(f(x)) \) : \( f(x)=2 x^{2}+4 \) \( g(x)=8 x+7 \) \( g(f(x))=[?] x^{2}+\square \)
Ask by Rowe Wells. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( g(f(x)) = 16x^{2} + 39 \)
Solution
To find \( g(f(x)) \), we need to compose the functions \( f \) and \( g \). Here's how to do it step by step:
1. **Given Functions:**
\[
f(x) = 2x^{2} + 4
\]
\[
g(x) = 8x + 7
\]
2. **Compose \( g(f(x)) \):**
\[
g(f(x)) = g(2x^{2} + 4)
\]
3. **Substitute \( f(x) \) into \( g(x) \):**
\[
g(2x^{2} + 4) = 8(2x^{2} + 4) + 7
\]
4. **Expand and Simplify:**
\[
8(2x^{2} + 4) + 7 = 16x^{2} + 32 + 7 = 16x^{2} + 39
\]
So, the composed function \( g(f(x)) \) is:
\[
g(f(x)) = 16x^{2} + 39
\]
**Final Answer:**
\[
g(f(x)) = 16\,x^{2} +\,39
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To find \( g(f(x)) \), we start by substituting \( f(x) \) into \( g(x) \). First, we have: \[ f(x) = 2x^2 + 4. \] Now, replace \( x \) in \( g(x) \) with \( f(x) \): \[ g(f(x)) = g(2x^2 + 4) = 8(2x^2 + 4) + 7. \] Now, distribute \( 8 \): \[ g(f(x)) = 16x^2 + 32 + 7 = 16x^2 + 39. \] So, we have: \[ g(f(x)) = 16 x^{2} + 39. \]