Question
upstudy study bank question image url

2) \( \frac{d[\operatorname{arcsec}(3 x)]}{d x} \)

Ask by Salinas Cole. in Puerto Rico
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( \operatorname{arcsec}(3x) \) con respecto a \( x \) es \( \frac{1}{x \sqrt{9x^2 - 1}} \).

Solution

Para derivar \( \operatorname{arcsec}(3x) \) con respecto a \( x \), aplicamos la regla de la cadena. La derivada de \( \operatorname{arcsec}(u) \) es: \[ \frac{d}{dx} \left[ \operatorname{arcsec}(u) \right] = \frac{u'}{|u| \sqrt{u^2 - 1}} \] En este caso, \( u = 3x \), por lo que \( u' = 3 \). Sustituyendo en la fórmula: \[ \frac{d}{dx} \left[ \operatorname{arcsec}(3x) \right] = \frac{3}{|3x| \sqrt{(3x)^2 - 1}} \] Simplificando: \[ \frac{3}{|3x| \sqrt{9x^2 - 1}} = \frac{1}{x \sqrt{9x^2 - 1}} \] Por lo tanto, la derivada de \( \operatorname{arcsec}(3x) \) respecto a \( x \) es: \[ \frac{d}{dx} \left[ \operatorname{arcsec}(3x) \right] = \frac{1}{x \sqrt{9x^2 - 1}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To differentiate \( \operatorname{arcsec}(3x) \), we can use the chain rule along with the derivative formula for arcsecant, which is given by: \[ \frac{d}{dx}[\operatorname{arcsec}(u)] = \frac{1}{|u| \sqrt{u^2 - 1}} \frac{du}{dx} \] In this case, \( u = 3x \), so we first find \( \frac{du}{dx} = 3 \). Now we can plug this into the formula: \[ \frac{d}{dx}[\operatorname{arcsec}(3x)] = \frac{1}{|3x| \sqrt{(3x)^2 - 1}} \cdot 3 \] This simplifies to: \[ \frac{3}{|3x| \sqrt{9x^2 - 1}} \] So, the derivative of \( \operatorname{arcsec}(3x) \) with respect to \( x \) is: \[ \frac{d[\operatorname{arcsec}(3x)]}{dx} = \frac{3}{|3x| \sqrt{9x^2 - 1}} \]

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy